یو پی اس(منبع تغذیه بدون وقفه)

یو پی اس(منبع تغذیه بدون وقفه)

pwer_tech1

 

 

همه چیز درباره یو پی اس

سر فصلها

فرق یو پی اس UPS هایOff Line,Line Interactive,On Line در چیست؟
چگونه یو پی اس UPS مناسب خود را انتخاب کنیم؟
چگونه زمان برق دهی(Back Up) را برای باتری ها محاسبه کنیم؟
انواع باتری های قابل استفاده در UPS یو پی اسکدامند؟
در صورتی که بخواهیم UPS یو پی اسبا ژنراتور سنکرون گردد چه نکاتی را باید رعایت نماییم؟
در انتخاب باتری با طول عمر مورد نیاز چه نکاتی راباید رعایت کرد؟
UPS یو پی اسکدام کشورها دارای کیفیت بالا می باشد؟(سازندگان کدام کشورها از معروفیت برخوردارند؟)
باتری های کدام کشورها معروف بوده و علت آن چیست؟
قبل از نصب چه موارد ایمنی باید رعایت گردد؟
محل مناسب برای UPS یو پی اسو باتری باید دارای چه ویژگی هایی باشد؟
مشخصات برق ورودی دستگاه چگونه باید باشد و چه نکات ایمنی باید رعایت گردد؟
مشخصات خروجی UPS یو پی اسچیست و چه وسایلی می توان به آن وصل نمود؟
چه وسایلی را نمی توان به UPS یو پی اسوصل نمود؟
چه مواردی در UPS یو پی اسباید مرتب بازبینی شود؟
عوامل موثر در افزایش طول عمر UPS یو پی اسو باتری چیست؟
انواع رابط کامپیوتری و نرم افزار در UPS یو پی اسکدام است؟
کارت SNMP چیست وچه ویژگی هایی دارد؟
آیا امکان تنظیم پارامترهای UPS یو پی اسوجود دارد؟

فرق UPS هایOff Line,Line Interactive,On Line در چیست؟

eco_power

یو پی اس چیست ؟
یو پی اس برگرفته از مجموعه کلمات Uninterruptible power supply است که دستگاهی الکترونیکی است که به منظور تأمین پیوسته انرژی برای دستگاههای مصرف کننده که به اختلافات موجود در شبکه و قطع برق حساس بوده و جزء مجموعه های کامپیوتری ، مخابراتی ، کنترل ، ابزار دقیق و آزمایشگاهی و بیمارستانی می باشد .
دستگاهی الکترونیکی است به منظور تامین پیوسته انرژی برای دستگاه‌های مصرف کننده که به اختلالات موجود در شبکه و قطع برق حساس بوده و به دلیل ضرورت و حساسیت‌های فوق العاده زیاد جزو تجهیزات حیاتی مجموعه‌های کامپیوتری، مخابراتی، کنترل و ابزار دقیق، ازمایشگاهی و بیمارستانی می‌باشند.
کاهش یا افزایش ناگهانی ولتاژ، تغییر فرکانس، انواع اعوجاج لحظه ای یا دایم، نمونه‌هایی از مشکلات ایجاد شده بر روی شبکه‌های برق شهری می‌باشند. دستگاه های الکترونیکی پیشرفته و حساس (نظیر سیستمهای کامپیوتری، تجهیزات مخابراتی و پزشکی) با توجه به کاربردهای ویژه و حساسی که دارند نیازمند تجهیزات ضروری مانند منبع تغذیه بدون وقفه و نسبتا دقیق بوده تا ولتاژ و فرکانس ثابت و قابل اطمینان را تامین نماید.
دستگاه UPS یو پی اساز وسایل ضروری کامپیوترها محسوب می‌شود. به عنوان مثال در صورت وجود کوچکترین اغتشاش در برق شهر بخش کنترل کامپیوتر، با تولید یک پالس موجب خاموش و روشن شدن مجدد (Restart) کامپیوتر می‌‌گردد. لذا با این عمل اطلاعاتی که در حافظه RAM سیستم وجود دارد، از بین رفته و زیان های جبران ناپذیری به کاربر وارد شده و حاصل کار کاربر در چند لحظه از بین می‌رود.
در مورد سایر سیستم‌های حساس نظیر دستگاه‌های مخابراتی و شبکه‌های اطلاعاتی نیز با قطع یا تغییر مشخصات منبع تغذیه، هماهنگی بخشهای مختلف دستگاه بهم خورده و بر اثر قطع و وصل‌های متوالی، علاوه بر صدماتی که به قطعات دستگاه وارد می شود، عملکرد کل سیستم با اختلال مواجه می‌گردد. با توجه به مطالب فوق، نیاز به وجود دستگاهی که بتواند جایگزین مناسبی برای برق شهر در مواقع اضطراری گردیده و با حذف اختلالات شبکه تغذیه مدارات حساس را بر عهده گیرد، نمایان می شود.
این دستگاه جهت استفاده کاربران، انرژی DC را به AC تبدیل می کند. لازم به ذکر است که در مواقع قطع برق میتوان از ژنراتوهای AC جهت تغذیه دستگاه‌ها استفاده نمود ولی این منابع با توجه به مشکلاتی نظیر شناور بودن ولتاژ و فرکانس، حجم بزرگ، الودگی صوتی، دودزا بودن، زمان طولانی وصل شدن بعداز قطع برق و لزوم سرویس و باز بینی دایمی عملا کاربردی در دستگاه‌های حساس ندارد. دستگاه‌های UPS یو پی اسبا ابعاد کوچک و بدون نیاز به سرویس دایمی و بدون ایجاد آلودگی‌ها با تثبیت ولتاژ و فرکانس، وسایل بسیار مناسبی جهت حفاظت سیستم‌ها در مقابل اختلالات برق شبکه می‌باشد.
به منظور افزایش مدت زمان برق ‌دهی در یو پی اس ها از کابینت باتری مجهز به باتری استفاده می‌باشد.

iso-tech

بطور کلی منبع تغذیه بدون وقفه ( یو پی اس ) دستگاهی است متشکل از قطعات حالت جامد (SOLID – STATEE) که بین منبع برق ورودی و بار وصل شده واز بروزاختلافات برق ورودی ( برق شهر ) از جمله قطع کامل آن جلوگیری می کند :

مدل یو پی اس ها از لحاظ ساختار طراحی در یکی از سه حالت , Line interactive ,Off-line On-line قرار می گیرند . صرفنظر از طراحی خاص هر یک ، چند ویژگی مهم در تمامی یو پی اس ها  مشترک است . همه آنها دارای باتری هستند و تا زمانی که برق شهر قابل استفاده است انرژی را در باتریها ذخیره می کنند و پس از قطع برق شهر انرژی باتری را به جریان متناوب ((AC تبدیل می کنند . بنابراین تمام سیستمها باید دارای شارژ باتری و مدار اینورتر باشند . همچنین تمام یو پی اس ها دارای یک سیستم Bypass هستند که همراه با یک سوئیچ در خروجی وسیله ارتباط با Loadd را جهت تغذیه مستقیم از برق شهر فراهم می کنند . در بسیاری از موارد مدار سوئیچ خروجی با به کاربردن سوئیچهای استاتیک تکمیل می شود . البته در یوپی اس های توان پایین این کار به وسیله رله انجام  می گیرد .

سیستم off – line

در یو پی اس مدل Off-line بارهای حساس از مسیر By pass انرژی دریــافت می کنند و اگـر تغذیـه مسیر By passs قطع شود یا ولتاژ آن خارج از محدوده قابل قبول و مجاز قرارگیرد ، مسیر اینورتر جایگزین آن می شود . در طی عملکرد عادی دستگاه ، هراختلالی که در محدوده قابل قبول ولتاژ Bypass باشد به بار منتقل می شود . اگر چه در بسیاری از مدلهای این یو پی اس در مسیر  Bypass خود تا حدودی از افزایش شدید و ناگهانی ولتاژ (spike ) جلوگیری می کنند و ***** های  RF (فرکانس رادیویی ) در مسیر Bypass آنها وجود دارد .

در شرایط عادی شارژر باتری به طور مداوم کار می کند تا باتریها را کاملا آماده نگهدارد . در برخی ازیو پی اس ها ممکن است اینورتر خاموش باشد تا راندمان کلی دستگاه افزایش یابد ، اگر چه  قسمتهای کنترل الکترونیکی آن به منظور عملکرد سریع اینورتر همواره فعال می باشند.

اگر ولتاژ Bypass از حداقل مجاز پایین تر رود ، اینورتر بلافاصله شروع به کار کرده و بار به وسیله سوئیچ استاتیک ( یا رله خروجی ) به اینورتر منتقل می شود با توجه به این که مراحل انتقال پس از قطع ولتاژ Bypassآغاز می شود وقفه اجتناب ناپذیر در تامین انرژی بار روی می دهد ، اگرچه این وقفه کوتاه به اندازه ۱۰~۲میلی ثانیه است

لازم به ذکراست که اکثربارها به نحو مطلوب و بی آنکــه متحمل اثـرات مضـری شـوند این زمان را پشت سر می گذارند و با عادی شدن وضع برق شهر بار مجددا به مسیر Bypass منتقل می شود.

KOMTECH

برخی از مشکلات موجود در برق شهر :

Power failure-1 : (قطع برق) : عبارتست از قطع کامل جریان برق
۲- power surge : (افزایش ولتاژ لحظه ای) : عبارتست از افزایش دامنه ولتاژ برق شهر برای چند سیکل متوالی
۳- power sag : (افت ولتاژ لحظه ای) :عبارتست از کم شدن دامنه ولتاژ برق شهر برای چند سیکل متوالی
۴- over voltage : (افزایش طولانی ولتاژ) : افزایش دامنه ولتاژ برق شهر برای مدت طولانی
۵ – under voltage : (کاهش دامنه ولتاژ) : کاهش دامنه ولتاژ برق شهر برای مدت طولانی
۶- spik/transilent : (نوسانات شدید لحظه ای) : نوسانات سریع و ناگهانی ولتاژ
۷- noise : (نویز الکتریکی) : معمولاً توسط منابع تغذیه کامپیوترها و یا امواج رادیویی و مغناطیسی ایجاد می شود .
۸- frequency variniation : (تغییرات فرکانس) : تغییرات در فرکانس برق شهر
۹- Harmonics : (هارمونیکا) : یک موج اضافی با دانه کوچک که فرکانس آن مضربی از فرکانس موج اصلی می باشد .

Server

یو پی اس ها چند دسته هستند ؟دسته بندی یو پی اس ها غالباً در سه قسمت انجام می شود.
۱-Off line
۲-On line
۳-Line interactive

Off line : این دسته از یو پی اس ها هنگام قطع برق و به عنوان منابع جایگزین فعال می شوند .

On line : در شرایط طبیعی ، تأمین خروجی در این نوع یو پی اس ها پس از تصحیح ورودی ( پاک  سازی ورودی از نویز و احیاناً سطح ولتاژ ورودی ) انجام می پذیرد تنها در مواقعی چون بروز نقص فنی ، over load یا افزایش خارج از رنج دما ، یو پی اس به مد Bypasss می رود .

Line interactive : در شرایط عادی این یو پی اس ها ورودی از طریق Bypass به ترانسفورماتور  منتقل می شود در این هنگام ترانسفورماتور به عنوان شارژر عمل می کند و در نهایت از همین طریق خروجی AC تأمین می گردد .
از مشخصات یک یو پی اس مناسب چیست ؟
• حفاظت در مقابل رعد و برق و افزایش ناگهانی ولتاژ برق
• حفاظت در مقابل برگشت ولتاژ روی دوشاخه ورودی در حالت استفاده از باتری
• حفاظت در مقابل دو فاز شدن برق ورودی
• حفاظت از دستگاه های مصرف کننده در مقابل تغییرات ولتاژ خروجی خارج از محدوده مجاز
• حفاظت در مقابل تغییرات ولتاژ و فرکانس برق ورودی
• حفاظت در مقابل افزایش بیش از حد دمای داخل دستگاه
• حفاظت در مقابل نویزهای common mod موجود در برق شهر
• حفاظت در مقابل اضافه بار و اتصال کوتاه خروجی
• حفاظت در مقابل اتصال معکوس باتری
• حفاظت در مقابل اتصال کوتاه شارژر
• حفاظت در مقابل اتصال کوتاه باتری
• حفاظت در مقابل تخلیه غیر مجاز باتری
• حفاظت درمقابل ولتاژ بالا تر از حد مجاز شارژ باتری
• حفاظت از خط تلفن ، فکس ، مودم و شبکه

th87008675

باتری های چند دسته اند ؟۱- باتری خشک
۲- باتری ژله ای
۳- باتری اسیدی

که برای دستگاه یو پی اس بهترین نوع باتری خشک می باشد که مزایای آن عبارتست از : طول عمر بالا ، عدم نیاز به نگهداری و سرویس و عدم تولید بخار اسید.
زمان برق دهی دستگاه یو پی اس چقدر است ؟
زمان برق دهی یو پی اس به دو عامل بستگی دارد :
۱- تعداد سیستم ها و میزان بار
۲- ظرفیت باتری مورد استفاده

که این زمان از ۵ تا ۷ دقیقه برای save اطلاعات و خاموش کردن سیستم شروع و تا بک آپ های بالا ادامه دارد

در ابتدا به تشریح برخی از اشکالات احتمالی و رایج در منبع توان ورودی نظیرافزایش سریع و ناگهانی ولتاژ (Spike) ، نویز (Noise)،افزایش ولتاژ لحظه ای (Surge) ، افت ولتاژ لحظه ای ( Sag ) ، هارمونیک(Harmonic) ،افت طولانی ولتاژ( Brownouts ) ، قطع برق شهر( Blackouts ) ،نوسانات فرکانسی Frequency variation) ) و زمان سوئیچینگ گذرا می پردازیم :

افزایش سریع و ناگهانی ولتاژ ( Spike )

th2GUOYHA9

spike ها ولتاژهای سریع ، ناگهانی و گذرا با طول زمانی کوتاهی هستند که می توانند به نواحی مثبت و یا منفی شکل موج اصلی برق اضافه شوند ، صاعقه ای که بصورت موضعی به زمین اصابت میکند بویژه زمانی که به کابلهای ارتباطی برق القاء شود از مهم ترین عوامل تولید این نوسانات میباشد. البته خارج شدن بارهای القایی و تجهیزاتی که جریانهای الکتریکی زیادی را Switch میکنند نظیر بارهای سلفی و خازنی ، یا بارهایی که بوسیله شرکت های برق Switch می شوند ، نیز می توانند سبب ایجاد اسپایک گردند . اسپایکها می توانند به اجزای الکتریکی خسارت وارد کرده یا آنها را از بین ببرند . مثلا براحتی وارد مدارات منبع تغذیه شده و سبب آسیب های سخت افزاری ونرم افزاری شوند.

نویز (Noise):

نویزها اغلب به دو صورت مد معمولی (normal mode)و مد مشترک (common mode) ظاهر میشوند. نویز حالت معمولی ، نتیجه اختلال بین ولتاژهای فاز به فاز و فاز به نول است ونویز حالت مشترک ناشی از بروز اختلال بین خطوط منبع وزمین می باشد.

نویزها سیگنالهای ناخواسته ای هستند که غالباً از چند میلی ولت تا چند ولت دامنه داشته و بر روی سیگنال های اطلاعات سوار شده و سبب تخریب یا ایجاد اختلال در ارسال اطلاعات (Hang کردن کامپیوتر) ، عملکرد نامطلوب دستگاههای حساس ، خرابی هارددیسک و حتی صفحه نمایش و …می گردند. موتورها ، پرینترهای لیزری، دستگاههای جوشکاری ،سیستمهای رادار ، فرستنده های رادیویی ، منابع تغذیه سوییچینگ و …می توانند مولد نویز باشند. لازم به ذکر است که در شبکه های کامپیوتری و سایتها ، مجاورت کابلهای شبکه(دیتا) با برق در صورتی که فاقد عایق یا روکش مناسب باشند نیز می تواند سبب ایجاد نویز و عواقب ناشی از آن گردد. البته کابل کشی مجهز به ارت استاندارد ،استفاده از دستگاههای یوپی اس با تجهیزات ارتینگ مناسب ( جهت به حداقل رساندن EMI یا تداخل الکترو مغناطیسی و RFI یا تداخل فرکانس رادیویی) و قرار دادن بارهای مصرفی در مکانهایی که حتی الامکان از منابع مولد نویز دور باشند ، میتواند به طور قابل ملاحظه ای از تاثیرات نا مطلوب نویزها بر عملکرد دستگاههای حساس بکاهد.

افزایش ولتاژ لحظه ای (Surge)

عبارت است از افزایش دامنه ولتاژ که برای مدت یک سیکل تا حدود یک دقیقه بروی خطوط انتقال به وجودمی آید. Surge بر خلاف Spike چون از یک سیکل بزرگتر است مقدار ولتاژ متوسط را تغییر نمی دهد ، اما چون دارای زمان بیشتری است اثرات نامطلوبی را بر منابع تغذیه سوئیچینگ دارد و سبب کاهش طول عمر یا خرابی تجهیزات الکترونیکی می شود . علت عمده تولید آن علاوه بر رعد و برق خارج شدن بارهای الکتریکی بزرگ مانند الکترو موتورها از خطوط برق یا بروز نقص وخطا در تجهیزات تامین کننده برق منطقه ای میباشد .

افت ولتاژ لحظه ای ( Sag)

عبارت است از کاهش دامنه ولتاژ که برای مدت یک سیکل تا حدود یک دقیقه بروی خطوط انتقال به وجودمی آید. که این امر ناشی از شروع به کار کردن یک بار بزرگ با جریان بالا مانند دستگاههای تهویه یا موتورهای الکتریکی است.(لازم به ذکر است که یک موتور میتواند جریان راه اندازی بیشتر یا معادل ۶ برابر جریان نامی خود داشته باشد .) افت ولتاژ لحظه ای (sag) میتواند سبب خرابی تجهیزات ، ایجاد خطا در پردازش داده و یا از دست دادن اطلاعات شود .

هارمونیک(Harmonic)

هارمونیک یک موج اضافی بادامنه کوچک است که فرکانس آن مضربی از فرکانس موج اصلی باشد.

هارمونیکها عموماً توسط بارهای غیر خطی بوجود می آیند که از برق شهر جریان هایی غیرخطی با دامنه بالا می کشند . یکسو سازهای کنترل شده ، منابع تغذیه سوییچینگ و ماشین های الکتریکی را می توان بعنوان منابع ایجاد این نوع تاثیر نام برد . همچنین می توان به کامپیوترها ، دستگاههای فتوکپی ، پرینترهای لیزری و موتورهای دوار با سرعت متغیر نیز اشاره کرد.هارمونیکهای اضافی باعث بروز خطا در شبکه و افزایش حرارت دستگاهها می شوند.
البته استفاده از تجهیزاتیکه منبع تغذیه آنها مجهز به مدار اصلاح ضریب توان ورودی باشد در کاهش هارمونیکهای اضافی بسیار موثر است .

افت طولانی ولتاژ( Brownouts )

Brownouts همانند Sag بوده با این تفاوت که طول مدت آن طولانی تر است ، افت ولتاژ طولانی ، اغلب به دلیل عدم توانایی تامین توان مورد نیاز ، توسط منبع اصلی تولید برق می باشد . البته مصرف کننده های بزرگ در ساختمان ومنطقه مانند سیستمهای تهویه مطبوع ویا گرمازا نیز می توانند باعث کاهش ولتاژ شبکه شوند . کاهش ولتاژ به مدت طولانی سبب ایجاد گرمای زیاد در موتورها و خرابیهای عمده ای در تجهیزات الکتریکی می شود.

قطع برق شهر( Blackouts )

عبارت است از قطع کامل جریان برق و در هنگام وقوع آن منبع نیروی برق کاملا از کار می افتد . این وضعیت در اثر بروز اشکال درتجهیزات خطوط نیرو ، حرارت ، طوفان همراه با رعد و برق و سایر شرایط پیش می آید و عواقبی چون از دست دادن اطلاعات وگاهی خرابی تجهیزات مصرفی را به دنبال دارد .

نوسانات فرکانسی ( Frequency variation)

به معنای تغییرات در فرکانس برق شهر یا منبع توان می باشد معمولاً این نوسانات در برق شهر ایجاد نمی شود این مورد که یکی از مشکلات منابع پشتیبانی مانند ژنراتورها می باشد می تواند در عملکرد دستگاههای حساس ایجاد مشکل نماید. البته در صورتیکه نوسانات فرکانسی در بازه وسیعی رخ ندهد بر عملکرد تجهیزات IT تاثیر نا مطلوبی نخواهد داشت .

زمان سوئیچینگگذرا )Switching Transient(

زمان سوئیچ در دستگاههایی همانند کامپیوترها که با منابع تغذیه سوئیچینگ کار میکنند باعث ایجاد پیشامدهای غیر عادی یا نا منظم مانند افت ولتاژ لحظه ای و یا ریست شدن میشود، البته در برخی موارد هم سبب ایجاد خرابی در تجهیزات الکتریکی خواهد شد .

th7FNU0BNG

نتیجهگیری :

اختلالات رایج و احتمالی موجود در منبع توان ورودی را به طور مختصر مورد بررسی قرار دادیم، حال با توجه به تجربیات و تحقیقات به عمل آمده در این زمینه به منظور حفاظت و تامین توانی مناسب برای تغذیه تجهیزات حساس مصرفی ، منبع تغذیه بدون وقفه Uninterruptible power system : ups) ( پیشنهاد می گردد .

جهت درک آسانتر به تشریح مفاهیمی در ارتباط با دستگاههای یو پی اس ( مطابق با استاندارد ملی ایران به شماره ۳-۷۰۲۷ ) می پردازیم :

کلیات :

یک سیستم قدرت بدون وقفه یو پی اس(UPS) به صورتی که در استاندارد ملی ایران شرح داده شده یک سیستم قدرت الکترونیکی است .عملکرد اصلی یوپی اس ، تامین پیوستگی و کیفیت  مشخصی از توان برای تجهیزات مصرف کننده ، در صورت بروز خرابی کلی یا جزئی منبع اصلی توان که معمولاً شرکت برق منطقه ای است ، می باشد. این عمل با تبدیل برخی از شکلهای انرژی ذخیره شده به توان تغذیه مورد نیاز تجهیزات مصرف کننده در دوره زمانی معین و زمانیکه توان تولید شده توسط شرکت برق به مدت کافی در دسترس نباشد یا قابل قبول نباشد ، انجام می شود .

تجهیزات مصرف کننده که نوعاً به آنها بار حساس یا محافظت شده اطلاق می شود ، ممکن است شامل قسمتی از تجهیزات یا یک اتاق یا ساختمان پر از تجهیزات باشد. این تجهیزات ، تجهیزاتی است که استفاده کننده تشخیص داده است که آنها به توانی دارای پیوستگی و کیفیت بهتری نسبت به توانی که عموماً در دسترس است ، نیاز دارند .

حساس معمولاً شکلی از تجهیزات پردازش داده می باشد ، اگرچه ممکن است تجهیزات دیگری از قبیل وسایل روشنایی ، وسایل اندازه گیری ، پمپها یا تجهیزات مخابراتی نیز باشند .

انرژی ذخیره شده برای تامین تغذیه این بار عموماً به صورت باتری است که ممکن است برای تامین توان تجهیزات به مدت زمان مشخصی که از چند لحظه تا چند ساعت است ، مورد نیاز باشد . این فاصله زمانی معمولاً تحت عنوان زمان انرژی ذخیره شده یا زمان انرژی پشتیبانی (back up) شناخته می شود .

یوپی اس های گوناگون برای بارهای کمتر از یکصد وات تا چندین مگا وات جهت برآورده کردن خواسته های کاربر در مورد پیوستگی و کیفیت توان وجود دارند .

thKLCQ196E

سیستم قدرتبدون وقفهیو پی اس (ups) :

ترکیبی از مبدلها ، کلیدها و وسایل ذخیره کننده انرژی ( برای مثال باتریها ) است که سیستم قدرتی را برای حفظ و نگهداری پیوستگی توان بار ، در حالتی که نقصی در توان ورودی پیش آید تشکیل می دهد.

ازقسمتهای اصلی تشکیل دهنده یک دستگاه یوپی اس می توان به موارد زیر اشاره نمود :

واحد یکسوساز ، واحد اینورتر ، واحد شارژر و باتری

واحد یکسوساز عبارتست از مبدل جریان متناوب به جریان مستقیم

واحد اینورتر عبارتست از مبدل جریان مستقیم به جریان متناوب

واحد شارژر وسیله ای است که برای تبدیل جریان متناوب به جریان مستقیم جهت شارژ نمودن باتری بکار می رود .

باتری ( انباره الکتریکی ) : دو یا چند سلول ذخیره انرژی الکتریکی که به هم وصل شده و به عنوان منبع انرژی الکتریکی استفاده می شوند

۴۰۴_Z1gymXJ6

انواع توپولوژی یوپی اس :

لازم به ذکر است یادآور شویم اغلب مردم به اشتباه بر این باورند که تکنولوژی یوپی اس محدود به دو نوع standby (off line ) & online می باشد ، درحالیکه تکنولوژیهای متعددی در مورد یوپی اس مطرح است که در این مبحث خلاصه ای از کارکرد و خصوصیات هر توپولوژی را بازنگری و  مقایسه می کنیم .

انواع توپولوژی :

۱- standby (off line ) & standby ferro
۲- line interactive
۳- double conversion
۴- delta conversion

APC-550-VA-UPS1

تکنولوژی standby (off line )

این توپولوژی عموماً برای تغذیه کامپیوترهای شخصی بکاربرده می شود

در شرایط عملکرد عادی (هنگامیکه منبع توان ورودی در بازه مجاز است ) ، توان از منبع ورودی به transfer switch و خروجی دستگاه یوپی اس انتقال داده می شود و در زمان خرابی منبع ورودی و یا خارج شدن ولتاژ و فرکانس از رواداریهای مجاز ، توان خروجی توسط اینورتر و انرژی ذخیره شده باتری تامین میگردد واینورتر تنها هنگامی شروع به کار میکند که منبع ورودی دچار خرابی گردد .

در این تکنولوژی توان خروجی از کیفیت چندان مناسبی برخوردار نیست و عمومأ در توانهای کم تولید می گردد.، اما راندمان بالا و قیمت پایین از مزایای این طراحی است.

تکنولوژی standby ferro

در این تکنولوژی ترانسفورمری با طراحی و عملکردی خاص بنام فرورزونانت بکاررفته که با به اشباع رفتن هسته ترانس ، ولتاژ تثبیت شده ای در خروجی فراهم میگردد،

 در شرایط عادی کارکرد، توان از منبع AC ورودی به سیم پیچ اولیه ترانسفورمر فرو منتقل شده و از ثانویه ترانسفورمر، توان خروجی  تثبیت شده با رگولاسیون مناسب به بار مصرفی انتقال می یابد. در زمان خرابی منبع ورودی ، اینورتر شروع به کار کرده و با استفاده از انرژی ذخیره شده باتری وترانسفورمر خروجی توان مورد نیاز تامین میگردد .

ایزولاسیون بسیار خوبی که ترانس فرورزونانت جهت تامین خروجی تثبیت شده ایجاد مینماید از بکار بردن هرگونه تجهیزات مونیتورینگ دیگری مناسبتر است، از اینرو رگلاسیون عالی برق شهر و قابلیت اطمینان بالا از نقاط قوت این تکنولوژی است .

یوپی اس های فرورزونانت با بکار گرفتن بعضی ژنراتورها و بارهای کامپیوتری که ضریب توان ورودی  شان اصلاح شده است ، دچار ناپایداری می شوند ، همچنین به دلیل اتلاف حرارتی بالا ، راندمان پایین و حجیم بودن این دستگاهها ، طی چند سال اخیر محبوبیت این طراحی کاهش یافته است.

این تکنولوژی درتوانهای ۳~۱۵ KVA طراحی و تولید می شود.

تکنولوژی line interactive
در این نوع تکنولوژی برق ورودی وارد بخشInterface Power شده و خروجی را تأمین و همزمان عمل شارژ باتری انجام می‌گیرد.

Inverter در حالت نرمال (برق شهر) وظیفه شارژ باتری و در حالت قطع برق شهر، وظیفه تولید برق سینوسی از انرژی ذخیره شده باتری را بر عهده دارد. (شکل شماره ۱۹) در این حالت همانطور که گفته شد، Inverter عمل شارژ باتری را انجام می‌دهد. در این نوع تکنولوژی برق ورودی وارد بخشInterface Power شده و خروجی را تأمین و همزمان عمل شارژ باتری انجام می‌گیرد. برق ورودی وارد ***** شده و ترانس AVR(Automatic Voltage Regulation) عمل تضعیف (Boost) یا افزایش (Buck) برق ورودی را انجام می‌دهد و با یک رگولاسیون خوب، برق را به بار مصرفی می‌رساند

این توپولوژی درسایتها ، شبکه وسرورها (تجهیزات( IT  بیشترین استفاده را دارد . ، در این طراحی اینورتر همواره روشن و به خروجی یوپی اس متصل است ودر حالت عملکرد عادی وظیفه شارژ باتریها را عهده دار است و زمانیکه توان ورودی از بازه مجاز تعریف شده خارج گردد ، پیوستگی توان خروجی از اینورتر و انرژی ذخیره شده باتریها تامین میگردد.

معمولا جهت فراهم شدن رگولاسیون ولتاژ مناسب در خروجی در این طراحی از ترانسفورمرهای tap changing نیز استفاده میشود.در مقایسه با توپولوژی standby تجهیزات مونیتورینگ بیشتری تعبیه شده و ناپایداری خروجی و نویزهای سوییچینگ نیز کاهش یافته است .
برق. قدرت. کنترل. الکترونیک. مخابرات. تاسیسات.

online-high-frequency-ups-1397867


در مجموع راندمان بالا ، قیمت پایین ، ضریب اطمینان بالا و توانایی اصلاح ولتاژ نامناسب ورودی ، این طراحی را در توانهای ۰٫۵~۵ KVA برتر و غالب می داند .
این نوع یو پی اس شامل دستگاههایی می شود که در آنها سعی شده با اضافه کردن سیستم تنظیم ولتاژ در مسیرBy pass عملکرد بهتری نسبت به سری Off-line ارائه شود . دو نوع از متـداولترین سیستمهای این رده یو پی اس مجهز به ترانس Buck/Boost وترانس ferrorvesonat می باشد.مشابه مدلهای Off-Line یو پی اس مدل Line-Interactive بار خــود را از طـریق مسیرBypass تغذیه می کند وبراثر هر حادثه ای که سبب قطع برق شهر شود آن رابه اینورتر انتقال می دهد. در بخشهای باتری، شارژر و مدار اینورتر نیز با سیستم Off-Line مشابه است اما به خاطر اضـافه شدن مدار تنظیم ولتاژ در مسیر By pass بار کمتر به اینورتر انتقال می یابد. چنین سیستمی تاثیر بیشتری درکاهش هزینه ها داشته و عمر مفید باتری در مقایسه با Off-Line بیشتر می شود.

۱۱-۳۰۰x207

انواع Line- Interactive

۱- ترانس
Buck/Boost جهت تنظیم ولتاژ در مسیر Bypass اضافه می شود این ترانس با سیم پیچ ثانویه چند سر به همراه چندین رله طوری تنظیم می شود که هر دو سطح پایین و بالای ولتاژ مسیر Bypass را به طور مناسب پوشش داده و بدین طریق ولتاژ خروجی یوپی اس را به اندازه ولتاژ مورد نیاز محدود می  کند. این بدین معناست که محدوده ولتاژ قابل قبول ورودی (بدون نیاز به عملکرد اینورتر) افزایش می یابد.یک یو پی اس در این طبقه بندی می تواند با دامنه ولتاژ ورودی بین +%۲۰ تا – %۳۰۰ فراتر از محدوده ولتاژ نامی و با استفاده از مسیر Bypasss ، ولتاژ بار خود را تامین کند.

۲- عملکرد ترانس فرورزنانس نیز شبیه ترانس Buck/Boost می باشد، در این مورد ترانس فرورزنانس جایگزین ترانس Buck/Boost شده است. این ترانس تنظیم و رگولاسیون ولتاژ را در برابر اختلالهایی مانند نویز خط الکتریکی انجام می دهد و به ازای تغییر در ولتاژ ورودی از -%۴۰ تا +%۲۰ خروجی تنها ۳%+ مقدار نامی تغییر خواهد کرد. همچنین این ترانس با ذخیره انرژی، برق مورد نیاز کامپیوترها را در زمان قطع کامل برق برای مدت کوتاهی تامین می کند تا اینورتر شروع به کار کند. بنابریان بدون ایجاد وقفه در جریان برق؛ بار بین مسیرBypass به اینورتر منتقل شده و یوپی اس عملاً به یک سیستم واقعی On-Line تبدیل می شود که در خروجی آن وقفه ای مشاهده نمی شود.

۳- در Bi- directional power converter تنها یک بلوک جایگزینی یکسو کننده (شارژر) و مدار اینورتر می شود، خیلی سریع تغییر حالت داده و به عنوان یک مدار اینورتر عمل می کند. همچنین از این نوع طراحی می توان در مدار Buck/Boost یا در هر کدام از سیستم های مختلف Line-interactive استفاده کرد.

تکنولوژی double conversion

این طراحی از جهاتی مشابه سیستم standby است با این تفاوت که در شرایط عملکرد عادی نیز اینورتر توان خروجی را تامین مینماید . در این طراحی ابتدا توانAC ورودی توسط رکتیفایر به DC و سپس توسط اینورتر، DC به AC تبدیل می گردد و امکان عملکرد دو سویه وجود ندارد .

به هنگام خرابی منبع ورودی ویا خارج شدن توان ورودی از رواداریهای مجاز، نیز اینورتر پیوستگی توان خروجی را با استفاده از انرژی ذخیره شده باتریها تامین مینماید، در این طراحی عملا transfer time نخواهیم داشت .این تکنولوژی مشخصه های کاری ایده آلی را در خروجی (مستقل از تغییرات ولتاژ و سرعت تغییرات فرکانس ورودی ) فراهم می سازد و در توانهای بالاتر از ۱ kVA طراحی و تولید می گردد ، اما به دلیل کارکرد مداوم اینورتر ، فرسایش قطعات و المانهای پاور ، ضریب اطمینان این سیستم کاهش می یابد ، بازده کم و تلفات انرژی و هزینه بالا نیز از دیگر معایب این تکنولوژی است .
در این تکنولوژی برای ساختن خروجی، یکبار تبدیل AC به DC و یک بار تبدیل DC به AC انجام می‌گیرد به همین علت به این نوع تکنولوژی Double Conversion می‌‌گویند. ابتدا ولتاژ ورودی تبدیل به DC می‌شود تا وابستگی به برق ورودی کاهش یابد و سپس خروجی از این ولتاژ به وجود می آید.

در حالت نرمال، ورودی وارد یک *****، یک مدار Inverter شده و از طریق Static Switch وارد خروجی می‌شوددر حالت باتری، ورودی از مدار قطع است و باتری‌ها خروجی را تأمین می‌کنند

– در وضعیت Bypass در این حالت مدارات داخلی یوپی‌اس حذف و خروجی مستقیما از ورودی تأمین می‌گردد.
این وضعیت در دو مورد زیر کاربرد دارد:

الف) در زمان تعمیر و یا سرویس دستگاه، نیازی به قطع آن از سیستم برق‌دهی نمی‌باشد، یعنی سرویس کار به جای آن که مجبور باشد تا کامپیوتر ها را خاموش نماید، می‌تواند یوپی اس‌ها را تعمیر نماید .) Bypass به صورت دستی(
ب)در زمان ایجاد Fault (نقص) برای دستگاه یوپی اس مثلا Over Load، Over Head، …) یوپی‌اسبه جای آن که خروجی دستگاه را قطع نماید) خود را به حالت Bypasss برده تا از خاموش شدن کامپیوترها جلوگیری نماید Bypass) به صورت اتوماتیک

تکنولوژی delta conversion

واژه دلتا که یک نماد یونانی است به معنای تفاضل یا اختلاف می با شد و نامگذاری تکنولوژی دلتا کانورژن نیز بر اساس بالانس توان خروجی با مقایسه شکل موج ورودی و خروجی در هر نقطه و جبران تفاضل موجود بوسیله کانورترهاست .

این توپولوژی حدود ۱۰ سال پیش جهت مرتفع ساختن معایب تکنولوژی دابل کانورژن طراحی وتولید شده است ،در شرایط عملکرد عادی توان خروجی با همکاری اینورتر اصلی و دلتا اینورتر تامین می گردد .

ودر شرایط خرابی منبع ورودی ، مشابه سیستم دابل کانورژن پیوستگی توان خروجی توسط اینورتر اصلی و با استفاده از انرژی ذخیره شده باتریها حاصل می شود .
در این طراحی کانورترها به صورت دوسویه عمل می کنند یعنی دلتا کانورتر و کانورتر اصلی توانایی تبدیل AC به DC و DC به AC را بطور همزمان دارند.

در طراحی دلتاکانورژن ، دلتاکانورتر یک کانورتر جریان است که دو وظیفه را به عهده دارد. وظیفه اول کنترل مشخصه های توان ورودی است که کشیده شدن جریان بصورت سینوسی و کاهش هارمونیکها و در نتیجه کاهش تلفات گرمایی و استهلاک کمتراز فواید آن می باشد .

دومین وظیفه کنترل و تنظیم جریان ورودی جهت تامین جریان شارژ باتریهاست .

اینورتر(کانورتر) اصلی نیز یک اینورتر ولتاژ با تکنولوژی PWM است که مهمترین وظیفه آن تنظیم و تثبیت ولتاژ در نقطه بالانس توان با تلرانس ۱%± است .

کیفیت خوب مشخصه های توان خروجی و راندمان بالا ، کاهش تلفات ، اصلاح ضریب توان ورودی ، کنترل دینامیکی و سازگاری با ژنراتور نیز از مزایای قابل ملاحظه این تکنولوژی است

%db%8c%d8%a8%d8%ab

سیستم On-Line

اولین تفاوت بین این طرح و آنچه که قبلا در سیستم off-line توضیح داده شد این است که شارژ باتری با بخش”یکسو کننده/شارژر”تعویض شده است.بخش “یکسو کننده /شارژر” ممکن است از دو قسمت جداگانه یا یک بلوک قدرت کامل تشکیل شده باشد.زمانیکه برق شهر در جریان است این بخش باطری را شارژ و انرزی اینورتر را توسط یک ولتاژ dc ثابت تامین می کند.در صورتی که برق ورودی (برق شهر)قطع شود شارژ خاموش شده و انرژی DCاینورتر توسط باتری تامین می شود و از این زمان باتری رفته رفته خالی می شود.این نوع یو پی اس که اصطلاحا یو پی اس Double Conversion نیز نامیده می شود بالاترین میزان حفاظت را ارائه می کند زیرا بار همواره با یک ولتاژ تنظیم شده تغذیه می شود.به عبارت دیگر حتی زمانی که برق شهر وجود دارد یکسو کننده شارژر و بخش های اینورتر فعال هست در حالت عادی هنگامی که بار انرژی خود را دریافت می کند به خوبی در برابر اختلالات برق شهر محافظت می شود.چون یکسو کننده و اینورتر مانند یک سد در برابر نویز موجود در خطوط انتقال برق و نوسانات زودگذر ولتاژ عمل کرده و در نهایت یک ولتاژ خروجی کاملآ تثبیت شده را تامین می کنند.اگـر ولتــاژ ورودی از محدوده مجاز(مثل۱۰%+ تا ۲۰%-) تجاوز کند یا این که کاملآ قطع شود .اینورتر با استفاده از انرزی باتری به کار خود ادامه می دهد انجام این مراحل به نحوی صورت می پذیرد که هیچ وقفه ای به بار منتقل نشود زمانی که انرژی باتری استفاده می شود اینورتر مانند زمان استفاده از برق شهر همان میزان رگولاسیون ولتاز را ارائه می کند و بار از طریق سوئیچ استاتیک به خروجی اینورتر متصل است.

 

انواع تکنولوژی ساخت

ساختار یو پی اس به‌این ترتیب است که:
برق ورودی وارد یک مبدل (Converter) شده و با رگولاسیون که در خروجی خود انجام می‌دهد وارد بار مصرفی می‌شود. یک منبع انرژی باتری هنگام قطع برق، انرژی را تأمین کرده و به منظور محفوظ ماندن انرژی در لحظه سوئیچینگ از برق به باتری و بالعکس از یک خازن استفاده می‌شودانواع تکنولوژی‌های شناخته شده جهت ساخت یوپی‌اس عبارتند از:
۱-Standby
۲- Line-Interactive
۳- Ferro Resonant
۴- Double Conversion
۵- Delta Conversion

در این قسمت سعی داریم شما را به سه نوع تکنولوژی ساخت یوپی‌اس آشنا نمائیم:

Ferro Resonant Technology)

درحالت نرمال (برق شهر)، Inverter قطع می‌باشد و ورودی مستقیما وارد ترانس شده تا خروجی فراهم شود

پارامترهای اصلی جهتخرید یک دستگاه UPS

THD (Total Harmonic Distortion)

وجود بارهایی که از منابع تغذیه سوئیچینگ استفاده می‌کنند، به دلیل ایجاد هارمونیک در شبکه، باعث داغ شدن سیم‌های نول و به تبعه آن باعث بروز گرما در سیستم برق می‌شوند. بنابراین برای مکان‌هایی که تعداد دستگاه‌های کامپیوتری زیادی دارند، توصیه می‌شود از یوپی اس با THDD جریان ورودی پایین مثلا ۱۰۰% استفاده شود.

Switch Time

عبارت است از فاصله زمانی بین سوئیچ از برق شهر به باتری و بالعکس. هر چه این زمان بیشتر باشد احتمال Restartشدن کامپیوتر در لحظه سوئیچ بیشتر خواهد بود.
دستگاه هایی که زمان سوئیچ آنها حدود صفر است به دستگاه های Online معروف هستند

Backup Time زمان موردنیاز برای وضعیتی است که برق شهر قطع شده و لازم است برای تغذیه بار مصرفی از انرژی ذخیره شده در باتری استفاده شود. این زمان بستگی به باتری دارد و با کم و زیادشدن باتری، کم و زیاد می‌شود. یو پی اس ممکن است دارای باتری داخلی و یا خارجی (کابینت  باتری) باشد.

Noise Filtration *****فیلتراسیون نویز بسته به مکان استفاده تغییر می‌کند و زمانی که کنترل نویزهای Normal و Common ورودی به سیستم مهم است از آن استفاده می‌شود.

Audible Noise زمانی که دستگاه روشن است بر اساس صدای ناشی از فن یا ترانس دستگاه میزان نویز صوتی سیستم مشخص می‌شود.

Size & Weight سایز و حجم دستگاه می‌تواند بر اساس مکان استفاده متفاوت و در بحث حمل و  نقل و یا خدمات مهم باشد

:Interface and Ergonomyشکل ظاهری و تناسب دستگاه با توجه به نوع دستگاه و مکان استفاده، نقش مهمی در انتخاب دستگاه دارد

Robustness and Reliabilityاستحکام و قابلیت اطمینان زیاد در برابر شرایط سخت و بحرانی از مهمترین پارامترهای انتخاب یوپی‌اس مناسب می باشد

Technology & Wave Shapeیکی از پارامترهای مهم در انتخاب یو پی‌اس مناسب، تکنولوژی ساخت آن می‌باشد که توضیحات آن‌ها در ادامه آمده است.
چنانچه منابع تغذیه دستگاه‌های مورد استفاده بسیار حساس بوده و هیچگونه نویز یا اعوجاجی نباید به آن وارد شود و شکل موج خروجی به صورت سینوسی کامل و بدون قطعی و بدون وابستگی به ولتاژ ورودی لازم باشد، توصیه می‌شود از یو‌پی‌اس‌های Online استفاده شود و چنانچه ورود نویز یا تغییر شکل موج خروجی سیستم از درجه اهمیت کمتری برخوردار است، یو پی‌اس‌های Line-Interactive توصیه می‌شود

:Rated VAتوان نامی دستگاه پارامتری است که از دو راه می‌توان مقدار آن را محاسبه و سپس دستگاه مناسب را خریداری نمود.

روش اول: مجموع مقادیر توان دستگاه‌های مصرفی بر حسب وات را محاسبه نموده و بر ۰٫۶ تقسیم می‌نماییم. عدد به دست آمده، مقدار توان مصرفی می‌باشد.

روش دوم: مقدار کل جریان را به دست آورده و آن را در ۲۲۰ ضرب نموده تا مقدار توان مصرفی به دست آید.
عددبه دست آمده از روش ۱ یا ۲ را با توجه به رنج تولیدی یو‌پی‌اس‌هاچک کرده و یو‌پی‌اس موردنظر را بیابید.
برای مثال من می‌خواهم برای کامپیوتر خود، یو‌پی‌اس‌ای را انتخاب نمایم. ابتدا از پشت Power کامپیوتر، مشخصات مانیتور و یا تجهیزات دیگر، وات‌های مربوطه را با هم جمع می‌کنم، که برای مثال عدد ۲۵۰W به دست می‌آید. حال بر ۰٫۶ تقسیم می‌کنیم تا عدد ۴۱۶٫۶ به دست آید. بنابراینیو‌پی‌اس مورد انتخاب من می‌بایست ۴۱۶٫۵VA خروجی داشته باشد تا در حالت Full Loadd کار کند. پیشنهاد می‌شود که مقدار بار متصل به یو‌پی‌اس نهایتا ۷۰% از توان خروجی یو‌پی‌اس باشد،

Input Voltage Range

میزان تغییرات ولتاژ ورودی یو‌پی‌اس می‌باشد. مثلا دستگاه یوپی‌اس که بازه ولتاژ ورودی آن ۱۴۸-۲۷۰ VAC می‌باشد، بدان معناست که یوپی اس بین ولتاژ ۱۴۸ تا ۲۷۰۰ ولت برق شهر بدون استفاده از باتری و با در اختیار گرفتن رگلاسیون  داخلی به کار خود ادامه داده و ولتاژ خروجی مناسبی را ارائه می‌دهد

Input Frequency Range

میزان تغییرات فرکانس ورودی یو‌پی‌اس می‌باشد. مثلا دستگاه یوپی‌اس که بازه فرکانس ورودی آن ۵۰ Hz ± ۵% می‌باشد، بدان معناست که یوپی اس در بازه فرکانسی ۴۷٫۵ تا ۵۲٫۵۵ هرتز بدون استفاده از  باتری و با در اختیار گرفتن رگلاسیون داخلی به کار خود ادامه داده و ولتاژ خروجی مناسبی را ارائه می‌دهد. یوپی‌اس در خارج از این بازه، ورودی یوپی‌اس را غیرنرمال تشخیص داده و به حالت Backupp درآمده و ولتاژ خروجی را از باتری تأمین می‌نماید

Output Voltage Range بازه ولتاز خروجی یوپی‌اس که مقدار آن با بازه ولتاژ ورودی دستگاه‌های مصرفی می‌بایست هماهنگ باشد

Output Frequency Rangeبازه فرکانس خروجی یوپی‌اس که مقدار آن با بازه فرکانس ورودی  دستگاه‌های مصرفی می‌بایست هماهنگ باشد

Efficiency – Normal Mode

Backup Regulation: مقدار توان خروجی دستگاه یوپی‌اس با توجه به مقدار توان ورودی دستگاه تحت عنوان Efficiency مطرح بوده که این عدد معمولا ۱۰۰۰% نیست، زیرا مقداری از توان ورودی توسط خود یوپی‌اس مصرف می شود.
میزان راندمان و کارایی دستگاه بنا به نوع تکنولوژی ساخت متفاوت و به خصوص در حالت باتری به علت تغذیه از باتری ها از اهمیت ویژه برخوردار است،
Efficiency در دستگاه‌های Line-Interactive بین %۸۰-۷۰ و در دستگاه‌های Online بیشتر از %۸۰ می‌باشد

 

از جمله مشخصات یک یو پی اس مناسب:

۱) سیستم حفاظتی:
• حفاظت در مقابل رعد و برق و افزایش ناگهانی ولتاژ برق
• حفاظت در مقابل برگشت ولتاژ روی دوشاخه ورودی در حالت استفاده از باتری
• حفاظت در مقابل دو فاز شدن برق ورودی
• حفاظت از دستگاه‌های مصرف کننده در مقابل تغییرات ولتاژ خروجی خارج از محدوده مجاز
• حفاظت در مقابل تغییرات ولتاژ و فرکانس برق ورودی
• حفاظت در مقابل افزایش بیش از حد مجاز دمای داخل دستگاه
• حفاظت در مقابل نویز های Common Mode موجود در برق شهر
• حفاظت در مقابل اضافه بار و اتصال کوتاه در خروجی
• حفاظت در مقابل اتصال معکوس باتری
• حفاظت در مقابل اتصال کوتاه شارژر
• حفاظت در مقابل اتصال کوتاه باتری
• حفاظت در مقابل تخلیه غیر مجاز باتری
• حفاظت در مقابل ولتاژ بالاتر از حد مجاز شارژ باتری
• حفاظت از خط تلفن/فکس/مودم/شبکه

۲) سیستم هشدار دهندهنوری و صوتی:
• تامین برق خروجی از باتری
• تامین برق خروجی از برق شهر
• نمایشگر ظرفیت باتری
• اضافه بار و اتصال کوتاه
• نمایشگر میزان توان مصرفی
• تضعیف باتری
• ولتاژ و یا فرکانس ورودی خارج از محدوده مجاز
• ولتاژ بالاتر از حد مجاز شارژ باتری
• خراب بودن باتری
• حالت خطا
• افزایش دمای داخلی دستگاه
• برق ورودی نرمال
• تامین برق خروجی از طریق سوئیچ Bypass
• عدم اتصال به ارت مناسب

برق. قدرت. کنترل. الکترونیک. مخابرات. تاسیسات.

• اتصال نادرست به فاز و نول برق شهر
• زمان Shutdown شدن و یا به خواب رفتن
• تضعیف باتری
• حالت خطا
• افزایش ولتاژ باتری و یا شارژر آن از حد مجاز درحالت برق
• اضافه بار
• اتصال معکوس باتری
• در حال Shutdown شدن و یا به خواب رفتن
• عملکرد تست
• عدم اتصال مناسب با ارت
• اتصال نادرست به فاز و نول برق شهر
• افزایش دمای داخلی دستگاه۳) قابلیتهای ویژه:
• توانایی کار با ژنراتور
• مجهز به سیستم Watchdog
• حذف نویزهای تداخلی الکترومغناطیسی EMI و رادیوئی RFI
• اصلاح ضریب قدرت ورودی (PFC)
• ماژولار بودن سیستم جهت تعمیرات آسان و صرفه‌جوئی در وقت
• مجهز به ترمینال مخصوص جهت اتصال به کابینت باتری
• دارای حجم و وزن پایین
• مجهز به شارژر سوئیچینگ
• مجهز به پورت ارتباطی هوشمند RS232
• مجهز به نرم‌افزار قدرتمند UPSwing Pro جهت ذخیره نمودن، بستن فایل های باز و خروج از شبکه در شرایط بحرانی و امکان کنترل و مانیتورینگ یوپی‌اس توسط آن
• مجهز به باتری سیلد اسید داخلی (برخی مدل‌ها)
• مجهز به دکمه‌ی تست جهت اطلاع از سلامت باتری
• مجهز به کنترل هوشمند میکروپروسسوری
• قابلیت راه اندازی یوپی‌اس بدون وجود برق شهر
• روشن شدن شارژر با اتصال یوپی‌اس به برق شهر بدون نیاز به روشن کردن یوپی‌اس
• امکان اضافه نمودن UPS Device Manager ها مانند SNMP Card
• امکان انجام Bypass دستی جهت تعمیر و یا سرویس دستگاه بدون نیاز به خاموش نمودن بارها (برخی مدل‌ها)

 

__________________

تواننامی : از دو راه می توان توان نامی را برای UPS را محاسبه نمود

روش اول : توان مصرفی تک تک دستگاهها را برحسب وات محاسبه نموده و با هم جمع نموده و بر ضریب توان خروجی یو پی اس تقسیم نموده توان دستگاه یو پی اس بر حسب ولت-آمپر بدست می  آید.

روش دوم : جریان مصرفی کل دستگاهها را اندازه گرفته در ۲۲۰ ضرب می نما ییم توان یو پی اس بر  حسب ولت-آمپر بدست می آید.

البته بهتر است که مقدار بار متصل به یو پی اس نهایتا ۷۰% از توان خروجی یو پی اس باشد تا در بارهای لحظه ای و کلید زنی که جریان لحظه ای دارند فشار کمتری به یو پی اس وارد شود.

رنج تغیرات ولتاژ و فرکانس ورودی:میزان تغیرات ولتاژ ورودی و فرکانس بدان معنی است که بازه ولتاژ ورودی و فرکانس( مثلآ
۱۶۰~۲۸۰ vae ولتاژ و فرکانس از ۴۵~۶۵ ) اگر در ورودی (برق شهر) تغییر نماید یو پی اس بدون  استفاده از باتری و با استفاده از رگلاسیون داخلی به کار خود ادامه داده و ولتاژ خروجی مناسبی را ارائه دهد .در صورتی که یو پی اس خارج از این بازه باشد ،یو پی اس به حالت Backupp رفته و  ورودی را قطع می نماید و از باتری استفاده می کند تا مجددا به حالت نرمال برگردد.رنج ولتاژ خروجی و فرکانس خروجی و رگولاسیون (بازه ولتاژ و فرکانس خروجی یو پی اس) آن باید با بازه ولتاژ ورودی دستگاههای مصرفی وصل به یو پی اس هماهنگ باشد ،در یو پی اس ها ی onlinee رگولاسیون ولتاژ کمتر از ۲%+ و فرکانس کمتر از۰٫۵%+ در یو پی اس ها ی off_line و  line_Interactive رگولاسیون ولتاژ ۱۰%+ تا ۳%+ وفرکانس بین ۵/۲% تا ۵/۰۰% می باشد.

چگونه زمان برق دهی(Back Up) را برایباتری ها محاسبه کنیم؟زمان Back up مدت زمانی است که باتری باید انرژی و توان مورد نیاز بار را تامین نماید و اغلب به آن زمان استقلال (Autonomy) یا زمان دشارژ نیز گفته می شود .

باتریها درانواع گوناگون و میزان آمپرساعت متفاوت عرضه می شوند ، بنابراین به منظور نصب باتری مناسب و استفاده ازآن باید محاسبه دقیقی انجام گیرد.

درانتخاب باتری با ظرفیت یا سرویس دهی مناسب حداقل به دو نکته باید توجه شود .

۱٫ بار باتری ۲٫ زمان استقلال یاBack up موردنیاز

ابتدا جریان کشیده شده از باتری را محاسبه می کنیم . به عنوان مثال :

اگر بار متصل به یو پی اس ۵KVA و ضریب توان آن ۰٫۸ باشد بار یو پی اس ۴kw است . اگر راندمان اینورتر یو پی اس ۹۰% بــاشد تلفـات اینــورتـر۳۶/ kw00 است . بنــابراین بــرای تغـذیه بار باتری باید به انــدازه Kw 4.36= 0.36 KW + 4KW توان ((dcc تولید کند.

حال اگر ولتاژ ثابت باتری ۱۹۲ ولت باشد و زمان Back up ، ۳۰ دقیقه باشد . ابتدا جریان dc را محاسبه می کنیم که جریان ۲۲٫۷۱خواهد شد .

توجه : محاسبه فوق به شکل ساده در این جا آمده است زیرا ولتاژ واقعی باتری با دشارژشدن آن افت می کند .

سازندگان باتری همیشه جداول یا نمودارهایی را عرضه می کنند که با استفاده از اطلاعات آنها می توان ظرفیت سرویس دهی موردنیاز را تعیین کرد.

انواع باتری های قابل استفاده در UPS کدامند؟

انواع باتری شامل : سرب اسید ، نیکل کادمیم ، لیتیوم و سیلور آلکالین می باشند.

مناسبترین نوع باتری برای UPS نوع سرب اسید (lead – acid) می باشد و بیشتر با درپوش کاملا بسته که نیاز به سرویس و نگهداری ندارد و با ولتاژ ۱۲VV استفاده می گردد . البته در آمپر ساعت بالا از ۲ ولتی استفاده می گردد در جاهایی که نیاز به طول عمربالاتر از۱۰ سال باشد . معمولا از نیکل کادمیم استفاده می گردد.

در صورتی که بخواهیم UPS باژنراتور سنکرون گردد چه نکاتی را باید رعایت نماییم؟
گاهی اوقات در ایجاد هماهنگی بین ژنراتورو سیستم یو پی اس مشکلاتی به وجود می آید ولتاژ خروجی ژنراتور ممکن است به عنوان ورودی یو پی اس قابل قبول باشد اما غالبا محدوده فرکانس خروجی ژنراتورفراتر از مقداری است که یو پی اس برای پذیرش آن طراحی شده است . دربدترین حالت تغییرات فرکانس درژنراتور به گونه ای خواهد بود که یوپی اس نمی تواند با آن ستکرون شود چون یا فرکانس خارج از محدوده مجاز است یا تغییرات بسیار سریع دارد به طوری که یو پی اس نمی  تواند با این تغییرات هماهنگ شود .

این مشکل به دو طریق قابل حل می باشد ابتدا اینکه کارخانه سازنده ژنراتور با توجه به اینکه دستگاه آنها در آینده ممکن است یک یو پی اس را تغذیه کند آن را طوری طراحی نماید که ژنراتور درتلرانس دقیقتر کار کند . دوم از یو پی اس هایی استفاده نماییم که بتواند تغییرات فرکانس در ژنراتور را قبول کند . البته تا زمانی که ولتاژ خروجی ژنراتور مناسب و با حداقل تغییرات باشد . ( معمولا یو پی اس های on-line بهتر از دیگر یو پی اس قابل سنکرون شدن با ژنراتور هستند)

در انتخاب باتری با طول عمر موردنیاز چه نکاتی راباید رعایت کرد؟

باتریها با طول عمر متفاوت تولید می گردند معمولا باتریهای نیکل کادمیوم دارای طول عمرزیاد می باشند ، در صورتی که سرویس و نگهداری آن درست صورت گیرد، ولی چون دارای قیمت بالامی باشد معمولا کمتراستفاده می گردد ، باطریهای سرب – اسید با درپوشی باز (تر) دارای قیمت کمتر با طول عمر متوسط بوده و نیاز به سرویس و نگهداری دارد ، بهترین باتری با قیمت مناسب نوع سیلد اسید ( سرب-اسید با درپوشی بسته ) می باشد ، اولا نیاز به سرویس و نگهداری ندارد . دوما دارای طول عمر ۴ سال به بالامی باشد ، البته امروز این باتریها با طول عمر بالای ۱۰ سال نیز تولید می گردد . بنابراین در هنگام انتخاب باتریها باید به نکات بالا توجه گردد . همچنین به این موضوع نیز توجه شود که بعضی از یو پی اس ها همه باتریها را برای اتصال به آنها نمی پذیرند که سازنده آنها معمولا  نوع باتری قابل اتصال به آنها را ذکر می کند.

UPS یو پی اسکدام کشورها دارای کیفیت بالا می باشد؟(سازندگان کدام کشورها از معروفیت برخوردارند؟)

امروزه خیلی از کشورها UPS تولید می کنند و روز به روز به این تولید کنندگان نیز افزوده می گردد ، البته در ایران امروزه بیشتر شرکتها واردکننده UPSیو پی اس هستند تا تولید کننده و تعداد معدودی تولید کنندهیو پی اس UPS هستند.

بیشتر UPS یو پی اسهای وارداتی نیز متعلق به شرکت های چینی می باشد که دارای کیفیت های متفاوتی است، روی هم رفته در حال حاضر یو پی اسUPS های کشورهای اروپای غربی از جمله ایتالیا و فرانسه دارای کیفیت بالاتری از دیگر کشورها می باشند .

امروزه UPS یو پی اسهای توان پایین با قیمت کم متعلق به کشورهای آسیای شرقی از جمله چین می باشد و UPSیو پی اس های با توان بالاتر از ۱۰۰KVAA خیلی کم در شرکت های چینی تولید می شود در حالی که UPS یو پی اسهای با توان بالای ۱۰۰KVA تا ۸۰۰KVA بیشتر در کشورهای اروپای غربی تولید می شود که دارای کیفیت بالا می باشد . بنابراین در صورت نیاز به کیفیت بالا با IP بالا؛ باید در کشورهای اروپای غربی به دنبال آن گشت .

باتری های کدام کشورها معروف بوده و علت آنچیست؟
باتریها(مخصوصا باتریهای خشک سیلد اسید )با طول عمرهای متفاوت تولید می شود. بیشتر باتریهایی که با طول عمر پایین تولید می شود؛ متعلق به کشورهای آسیایی از جمله چین می باشد ،کمتر باتری با طول عمر بالای ۵ سال تولید می شود و اگر تولید می گردد معمولا کمتر به کشور ایران وارد می شود(به دلیل نبود مشتری) در حالی که باتری ها با طول عمر بالای ۱۰ سال بیشتر در کشورهای آمریکایی و اروپایی تولید می گردد و باتری ها با طول عمر ۵ تا ۸ سال نیز در کشور کره تولید می گردد،بنا براین در صورتی که باتری با طول عمر بالای۱۰سال می خواهید بهتر است باطری اروپایی خریداری نمایید و در صورتی که باتری ارزان قیمت بخــواهید باتری چینی خریداری نمایید و اگر متوسط طول عمر و قیمت را می خواهید می توانید از باتری های کره ای استفاده نمایید.

قبل از نصب چه موارد ایمنی باید رعایت گردد .

۱٫ طریقه حمل و قرارگیری برای سالم رساندن یو پی اسUPS به مکان نصب
۲٫ اندازه و وزن ، آیا محل نصب فضای کافی برای نصب UPSیو پی اس و کف آن تحمل وزن UPS یو پی اسرا دارد
۳٫ انتخاب مکان نصب مناسب ( برای بالا بردن طول عمر UPSیو پی اس و باتری)
۴٫ شرایط محیطی ( حرارت ، رطوبت و نویز صوتی محل نصب )
۵٫ نصب الکتریکی ( نوع اتصالات ، مقطع کابلهای ورودی و خروجی ، فیوزهای حفاظتی و غیره )
۶٫ اتصال بار به یو پی اس ( فاز و نول بارها مستقیما به یو پی اس و تابلوی UPSS وصل گردد ودر بین راه بابرق شهر اتصال نداشته باشد ، توزیع بار بین فازها در صورت سه فاز بودن و غیره …)
۷٫ اتصال زمین ( ارت ، برای برطرف کردن نویز و حفاظت دستگاههای برقی و یو پی اس )
۸٫ بررسی عملیات نصب ( بررسی نصب و راه اندازی بدون خطا و اشکال )

محل مناسب برای UPS و باتری باید دارای چه ویژگی هاییباشد؟

۱٫ فضای موجود کافی باشد .
۲٫ سطح زمین توان تحمل وزن دستگاه را دارا باشد.
۳٫ نصب دستگاه باعث ایجاد مزاحمت برای کارکنان یا اختلال در کارها نشود.
۴٫ شرایط محیطی مکان انتخابی مناسب باشد (حرارت ایده آل برای باتری ۲۰◦C تا ۲۵◦C و حرارت کارکرد UPS 0 – ۴۰ ◦C می باشد و رطوبت بین ۹۰% – ۲۰% باشد نویز محیط زیاد نباشد که روی کارکرد یو پی اسUPS تاثیر بگذارد
۵٫ تجهیزات ایمنی جهت دسترسی آسان به یو پی اس فراهم باشد.
۶٫ نصب یو پی اس نباید برجریان هوا و شرایط محیطی تجهیزات تاثیری بگذارد .
۷٫ سعی شود کلیدها و ابزار سوئیچ و کنترل یو پی اس در یک مکان باشد .
۸٫ در محل انتخاب شده برای نصب یو پی اس؛جای امنی برای تعبیه باتری وجود داشته باشد .

مشخصات برق ورودی دستگاه چگونه باید باشد وچه نکات ایمنی باید رعایت گردد؟

۱٫ از فازهایی استفاده نمایید که بارهایی با جریان لحظه ای بالا روی آن نباشد که هر بار با وارد شدن این بارها ولتاژ از حد متعارف افت ننماید .
۲٫ از فیوز جداگانه در تابلو برق شهر برای UPSیو پی اساستفاده نمایید .
۳٫ فیوز ورودی یو پی اس را با توجه به ماکزیمم جریان ورود با ضریب ۲/۱ انتخاب نمایید.
۴٫ در صورتی که یو پی اس سه فاز می باشد ترتیب فازها رعایت گردد .
۵٫ فرکانس برق ورودی از محدوده مجاز خارج نباشد .
۶٫ ولتاژ ورودی از حد مجاز خارج نباشد .

مشخصات خروجییو پی اس UPS چیست و چه وسایلی می توان به آنوصل نمود؟

مشخصات خروجی هر UPSیو پی اس با توجه به مشخصات فنی دستگاه مشخص می گردد که  شامل :

۱٫ توان ، ضریب توان؛ ولتاژ ، فرکانس ، ظرفیت تحمل اضافه بار و THD خروجی و غیره
۲٫ توان هر دستگاه، که مشخص می باشد زیرا با توجه به سفارش شما تعیین می گردد .
۳٫ ضــریب توان خروجی، که بهتر است بالاتر از ۰٫۸ باشد که ضریب توان اکتیو (وات خروجی را مشخص می کند.)
۴٫ ولتاژ خروجی که بازه ولتاژ خروجی با تلرانس خروجی آن مشخص می شود. مثلا : ۲۲۰ +/-۲۰%

چه وسایلی را نمیتوان به UPSیو پی اس وصل نمود؟
یو پی اس معمولا دستگاهی انعطاف پذیر است ، اما نوع خاصی از بارها هستند که نباید آنها را به روش متدوال به یو پی اس وصل نمود ، این بارها عبارتند از :

۱٫ لامپهای فلورسنت یا لامپهای گازی

۲٫ موتورها و کمپرسورها

۳٫ دستگهاههای تهویه مطبوع

۴٫ پرینترهای لیزری

هریک از این دستگاهها درحین کارکردن عادی و یا در لحظه روشن شدن ، جریان زیادی از منبع تغذیه خود می کشند جریان زیاد یو پی اس را به حالت اضافه بار می برد ، در نتیجه ولتاژ خروجی یو پی  اس قطعاکاهش خواهد یافت و این امر سبب آسیب دیدن سایر قطعات و تجهیزات حساس می گردد مثلآ جریان راه اندازی موتورها معمولا بین ۴ تا ۱۰ برابر مقدار نامی آن می باشد.

در صورتی که بخواهیم از یو پی اس برای حفاظت از بارهایی با جــریان لحظه ای زیاد مــانند پرینتر های لیزری و موتورها استفاده کنیم ،یو پی اس مورد نظر باید از مشخصات الکتریکی قویتری  برخوردار باشد.

چه مواردی در UPS یو پی اسباید مرتب بازبینی شود؟
در ups یو پی اسها به صورت دوره ای باید مواردی مرتب چک گردد که آنها شامل ولتاژ و فرکانس ورودی و خروجی ، توان مصرفی ups ، دمای محیط و دمای داخلی ups یو پی اس، مسیرهای تهویه و فنهای داخلی یو پی اسups ، جریان شارژ باتریها؛ با قطع ورودی یو پی اسups و اطمینان از سالم بودن کلیه باتریها در هنگام back up ، اطمینان از سالم بودن کلیه کلیدهای ورودی و خروجی و غیره …………

عوامل موثر در افزایش طول عمر UPSیو پی اس و باتریچیست؟
انواع مختلف یو پی اس و سیستمهای گوناگون وابسته به آنها و باتریها به منظور اطمینان از داشتن مساعدترین وضعیت کاری به سرویس و نگهداری دوره ای و به خصوص تعویض برخی قطعات نیازدارند . بنابراین برای اطمینان از این که دستگاه در طول عمر مفید خود در بهترین شرایط کاری نگهداری شود نیاز به سرویس و نگهداری به صورت برنامه ریزی شده دارد و همچنین تعویض قطعات در پایان عمر مفید آنها که این باعث افزایش طول عمر سیستم می گردد . ( در مورد شرایط سرویس و نگهداری به سئوال یک و دو مراجعه کنید)

انواع رابط کامپیوتری و نرم افزار در UPS یو پی اسکدام است؟

یو پی اس های جدید مجهز به امکاناتی برای اعلام وضعیت وطرز کار خود به مراکز کنترل سیستم و  دستگاههای حساس می باشند . در ساده ترین حالت این گونه اطلاعات به وسیله کنتاکتهای بدون پتانسیل منتقل می شوند در مراحل پیشرفته تر تبادل اطلاعات از طریق پورت سریال RS – ۲۳۲ و USB انجام می شود با استفاده از کارت SNMP و ارتباط سریال آن اطلاعات بیشتری با سرعت بالاتر به شبکه کامپیوتری ارسال می گردد و بدین روش اطلاعات بررسی شده درصورت نیاز سیستم؛اطلاعات از طریق شبکه ارسال می شود .

به دلیل اینکه هر کدام از کارخانه های سازنده یو پی اس یک پروتکل RS – ۲۳۲ مخصوص به خود را بکار می برند . نرم افزارهای shutdownn و سایر تجهیزات آنها که در سیستم نصب می شوند . ( به عنوان مثال windows nt و کارت AS400) از کنتاکتهای بـدون پتانسیل به عنـوان نشاندهنده وضعیت یـو پی اس استفاده می کنند .

متاسفانه در اروپا استاندارد معینی برای پروتکل RS – ۲۳۲ وجود ندارد ، بنابراین هرکدام از سازندگان یو پی اس پروتکل مخصوص خود را بکار می برند . به همین دلیل خریداران یو پی اس باید نرم افزار مناسب جهت ارتباط به یو پی اس توسط RS -2322 را از سازندگان با فروشندگان مجاز یو پی اس  دریافت کنند .

این نرم افزار های کنترلی با سیستم عاملهای کامپیوتر سازگاری دارد و معمولا دارای امکانات زیر است :

۱٫ نمـایش گرافیکی وضعیت یو پی اس ، ولتاژ ، جریان ، درصد بار ، ولتاژ باتری و فـرکانس مـربوط به آن
۲٫ داشتن قابلیت برنــامه ریزی در برابر وضعیتهای به خصوص بروز خطا در سیستم؛ و اعـلام این آلارمها به کاربران
۳٫ داشتن یک جدول زمان بندی برای آزمایش سیستم با انجام برخی وظایف دستگاه و ثبت همه اطلاعات

کارت SNMP چیست وچه ویژگی هاییدارد؟

کارت SNMP یو پی اس را مستقیما به شبکه کامپیوتری وصل می کند ، به صورتی که یو پی اس به  یکی از دستگاههای متصل به شبکه تبدیل می شود .

معمولا کارت SNMP بین پورت ارتباطی سریال یو پی اس و شبکه کامپیوتری قرار می گیرد . اگرچه کارتهای موجود در بازار می توانند به عنوان رابط بین کنتاکتهای بدون پتانسیل یو پی اس و شبکه  نیز در نظر گرفته شوند . این کارتها اطلاعات حاصل از کنتاکتها را به فرم مناسبی تبدیل می کنند تا توسط سایر دستگاههای شبکه نیز قابل دریافت باشند .

آیا امکان تنظیم پارامترهای UPS وجود دارد؟
لازم به ذکر است که در بعضی از یو پی اسUPS ها امکان تنظیم ولتاژ خروجی ، ولتاژ باتری و ولتــاژ مسیر by pass به صورت نرم افزاری و از روی پنل جلوی یو پی اس امکان پذیر می باشد و در بیشتر یو پی اسUPS ها این تنظیمات ممکن است توسط پتانسیومتر و از روی بردهای کنترولر و یا به صورت سخت افزاری با تعویض یک سری قطعات امکان پذیر می باشد که در مورد دوم معمولا این کار توسط سازندگان و یا تکنسین های مجرب صورت می گیرد و بهتر است توسط خریداران به هچ عنوان صورت نگیرد

iso-tech


UPS Management Software

یکی از معیارهای مهم جهت خرید یوپی اس، بررسی بحث مدیریت آن توسط نرم افزار مرتبط با یو پی‌اس می‌باشد. مانیتورینگ و کنترلینگ یوپی‌اس حتی به صورت Remote)) مکانیزم  Auto Savingg فایل‌ها در زمان‌های بحرانی، کاربرپسند بودن و پشتیبانی آن از سیستم‌عامل‌های مختلف از جمله مهمترین ویژگی‌های یک نرم افزار مدیریت یوپی‌اس می‌باشد.

باتری خشک

یکی دیگر از عوامل مهم انتخاب UPSیو پی اس در حال حاضر برای کاربران غیر حرفه ای ونیمه حرفه ای وجود باتری خشک دریو پی اس UPSS است . این باتری به کاربر این امکان را می دهد تا  بتواند در زمان قطع برق نیز از سیستم خود استفاده کند

ضوابط تاسیسات مکانیکی و برقی در بیمارستانها

ضوابط تاسیسات مکانیکی و برقی در بیمارستانها

b16

دستورالعمل ضوابط تاسیسات مکانیکی و برقی در بیمارستان ها

 

کمبود دستورالعملهای تخصصی و به روز ،  برای جزییات و حتی کلیات ضوابط  مورد نظر حاکمیت درموضوع  چند بخشی  «بیمارستانسازی»   نزد تمامی دست اندرکاران بیمارستانی در کشور مورد اتفاق میباشد

مدتی است در اقدامی در خور تحسین ، دفتر توسعه منابع فیزیکی و امور عمرانی وزارت بهداشت متونی را در قالب آئین نامه و دستورالعمل تهیه و به جامعه بیمارستانی کشور ارایه نموده اند . این موضوع اقدامی بسیار ارزشمند در عدم اتلاف وقت و سرمایه کشور بوده و حداقل ناظر و مجری و طراح  ، محدوده فکری و اجرایی کارها را قبل از هر اقدام  فیزیکی دانسته و برآن مسیر قدم خواهند نهاد

البته اینکه این دستورالعملها نقص دارد یا ندارد ، قدم بعدی است ولی بدون انتشار آرای مدیران دولتی چگونه نقاط ضعف یا قوت برنامه هایشان قابل درک و تغییر است؟  اینکه خبرگان بیمارستانی کشور این موارد را بدانند و معایب آن را در ویرایش های دوره ای احصاء و اثبات نمایند قدم بعد از مرحله تدوین و ابلاغ این ضوابط است ، همانطوریکه جو عمومی  در بعد از ابلاغ هر دستورالعمل  نزد خبرگان و دست اندرکاران بیمارستانداری و بیمارستانسازی هم  ، جنب وجوش برای اصلاح طلبی  را  نشان میدهد که قطعآ لازم و منطقی است.

به هر حال ، مدتی پیش دستورالعمل  ضوابط و معیارهای تاسیسات مکانیکی و برقی در بیمارستانها از سوی دفتر مذکور برای اجرا  به دانشگاههای علوم پزشکی سراسر کشور ابلاغ گردید.  ایرادات شکلی و ماهوی در مفاهیم و نحوه ابلاغ این دستورالعمل ،  موضوعی است که توسط گروههای مختلف خبرگان بیمارستانی کشور در حال بحث و گفتگوست . لیکن اهمیت و ارزش این ابلاغیه در انشاء نظرحاکمیت برای جامعه بیمارستانی  ، بالاتر از معایب و نواقص و کمبودهای مندرج در آن میباشد.

این دستور العمل بمنظور رعایت ضوابط و معیارهای طراحی و اجرایی تاسیسات مکانیکی و برقی درکلیه فضاهای درمانی بیمارستانی تحت پوشش دانشگاههای علوم پزشکی و خدمات بهداشتی درمانی سراسر کشور به مشاورین ، طراحان و پیمانکاران و دست اندر کاران مربوطه ابلاغ گردیده  و رعایت آن برای کلیه دانشگاههای علوم پزشکی سراسر کشور و همچنین کلیه بیمارستانهای بخش خصوصی و دولتی الزامیست.

 

نام دستور العمل:

 ضوابط و معیارهای تاسیسات مکانیکی و برقی در بیمارستانها

 

شماره دستور العمل : ME-001      تاریخ دستور العمل : خرداد ۱۹۳۱

هدف از ارسال : این دستور العمل بمنظور رعایت ضوابط و معیارهای طراحی و اجرایی تاسیسات  مکانیکی و برقی درکلیه فضاهای درمانی بیمارستانی تحت پوشش دانشگاههای علوم پزشکی و خدمات بهداشتی درمانی سراسر کشور به مشاورین ، طراحان و پیمانکاران و دست اندر کاران مربوطه ابلاغ می گردد.

 

ضرورت اجرای دستور العمل : با توجه به نقش حساس بیمارستانها در هنگام بروز بحرانها اعم از  طبیعی و غیر طبیعی و بمنظور کاهش میزان مرگ و میر ناشی از حوادث و بلایا ،لازمست ضوابط و استانداردها و شیوه های طراحی مناسب اعم از ساختمانی ،تاسیساتی و تجهیزاتی در کلیه بیمارستانها و فضاهای درمانی رعایت گردد.

این امر سهولت در روابط و گردش کار خدمات رسانی و همچنین صرفه جویی در هزینه های ناشی از تغییرات بعدی را نیز در بر خواهد داشت.

بدیهی است با رعایت ضوابط و استاندارد ها امکان ارائه خدمات به نحو مطلوبتر انجام گردیده و نتیجتا تاثیر مثبت آن در سلامت جامعه پدیدار خواهد شد.

این دستور العمل در بررسی نقشه های مراکز بیمارستانی دانشگاهها و بخش خصوصی نیز مورد توجه قرار خواهد گرفت.

 

حیطه شمول دستور العمل: کلیه دانشگاههای علوم پزشکی و خدمات بهداشتی و درمانی سراسر  کشور و همچنین کلیه بیمارستانهای بخش خصوصی و دولتی

 


 

ضوابط تاسیسات مکانیکی در بیمارستانها وفضاهای درمانی

 

– ۱ نصب فیوز قطع گاز در ورودی ساختمانها الزامی است .

– ۲ زونهای آتش در کلیه فضاها مشخص گردد و محل عبور کانالهای و داکتهای تاسیساتی از یک زون آتش تا زون آتش دیگر کاملاً هوا بند گردد و با مواد نسوز محافظت گردد .

– ۳ کلیه منابع تولید گرما و انرژی نظیر مبدل ها ، منابع انبساط ، مخازن دو جداره ، لوله کشی ها از عایق بندی مناسب برخوردار باشند .

– ۴ کلیه دودکش ها دارای دمپر مناسب باشند .

– ۵ از دیگها ، مشعل ها و دستگاههای با راندمان انرژی بالا و همچنین دارای برچسب انرژی استفاده شود .

– ۶ استفاده از دمپر ضد آتش در ورودی هر زون آتش الزامیست .

– ۷ درصورتیکه زونهای آتش در بیمارستان و یا سایر فضاهای درمانی مشخص نشده ا ند در ورودی هر کانال اصلی )کانال هوای رفت( به طبقات یک دمپر ضد آتش نصب گردد .

– ۸ در سیستم لوله کشی در محل درزهای انقطاع برای کلیه لوله ها بعد و قبل از درز انقطاع ازاکسپنشن جوینت استفاده شود .

– ۹ در نقاطی که از اکسپنشن جوینت استفاده شده است حتما تا فاصله سه متری آن از تکیه گاه لغزنده استفاده گردد .

– ۱۰ برای کلیه طبقات موتورخانه فرعی در نظر گرفته شود و یا در صورت عدم امکان برای دسترسی به شیرهای قطع و وصل دریچه مناسب پیش بینی گردد .

۱۱-  لوله های کندانسیت و بخار رختشویخانه به استریل ، امحاء زباله در زیر طبقه اجرا شود و از حرکت لوله های بخار به شکل رایزرهای عمودی اجتناب گردد .

– ۱۲ روی کانالهای تاسیساتی در محل عبور از درزهای انبساط ساختمان باید اتصال قابل انعطاف نصب شود .

– ۱۳ کلیه کانال ها و اتصالات قابل انعطاف در برابر حریق مقاوم باشند .

– ۱۴ الزامات مربوط به ضخامت کانالها بر اساس مقررات ملی ساختمان کنترل و اجرا گردد .

– ۱۵ نصب دریچه های توزیع هوا همراه با دمپر کاملا قفل شو الزامی است .

– ۱۶ کلیه مسیرهای لوله کشی های افقی از مسیر سقف کاذب انجام گیرد و از قرار گرفتن لوله ها در کف و یا سقف جداً خودداری شود )حتی در هنگام تعمیرات (

– ۱۷ کلیه لوله های افقی گازهای طبی در داخل سقف کاذب همان طبقه و انشعابات عمودی حتی الامکان در داخل دیوارهای گچی نصب شود .

– ۱۸ کلیه مسیرهای اصلی گازهای طبی در بخش های مختلف به والو گاز مجهز باشند

– ۱۹ نصب دستگاه اعلام وضعیت مرکز گازهای طبی در مرکز تلفن بیمارستان برای کنترل دستگاههای مرکزی ضروری است .

– ۲۰ در اتاق نگهداری کپسول های گازهای طبی نصب دریچه ورود هوا الزامی است .

– ۲۱ نصب شیر فلکه های قطع و وصل بر روی کلیه خطوط آب سرد و گرم بهداشتی طبقات ضروری است /

– ۲۲ برای هر کدام از گروه لوازم بهداشتی یک سری شیر قطع و وصل از نوع شیر پیسواریا جعبه شیرهای قطع و وصل ضروری است .

– ۲۳ مسیر لوله های افقی فاضلاب در بالاترین تراز ممکن اجرا گردد .

– ۲۴ برای نصب لوله های فاضلاب در مسیرهای تعیین شده از بستهای قلابی شکل مناسب استفاده شود .

– ۲۵ منبع ذخیره سوخت در فضایی مناسب و خارج از موتورخانه نصب گردیده و از آنجا به مقدار لازم با لوله کشی مناسب برای منبع سوخت روزانه انتقال داده شود .

– ۲۶ فضای موتوخانه به سنسور نشت گاز مجهز گردد . “والو گاز” مجهز باشند .

۲۷ در فضای موتورخانه برای ساپورت لوله ها و کلکتورها حتی الامکان از ساپورتهای هلالی به دلیل استحکام بالاتر استفاده گردد . و در مواردیکه این ساپورتها وجود ندارد به طور مضاعف این ساپورتها نصب گردد .

– ۲۸ برای سیستم بخار حتما خطوط LP- MP- HP  در نظر گرفته شود.

– ۲۹نصب دی اریتور در مجموعه تولید بخار ضروری است .

– ۳۰ در نظر گرفتن و اصلاح طرح و اجرای موتورخانه های بخاری که چاله کندانس و منبع کندانس ندارند ضروری است .

– ۳۱ نصب شیرهای فشار شکن بر روی کلیه خطوط تغذیه کننده بخار الزامی است .

– ۳۲ کلیه منابع ذخیره آب سرد به الزامات مقرر در مبحث شانزدهم مقررات ملی ساختمان مجهز گردد . بالاخص فلومتر – فاصله هوایی

– ۳۳ اتصال کلیه لوله های انشعاب شده از کلتورهای موتورخانه از نوع باز با شیر فلکه قطع و وصل مناسب با توجه به سایز لوله مذکور باشند .

– ۳۴ کلیه فضاهای تاسیساتی دارای کفشور مناسب باشند .

– ۳۵ کلیه پمپ ها دارای شیر فلکه قطع و وصل و صافی باشند .

– ۳۶ لوله های اصلی گاز و آب با کابل برق با فاصله حداقل ۴۱ افقی و عمودی با یکدیگر اجرا گردد .

– ۳۷ وجود فضای امحاء زباله برای بیمارستان الزامی است .

– ۳۸ وجود فضای اتاق گازهای طبی برای بیما رستان الزامی است .

– ۳۹ وجود سردخانه زباله برای بیمارستان الزامی است .

– ۴۰ وجود سیستم امحاء زباله برای بیمارستان الزامی است .

– ۴۱ وجود تصفیه خانه فاضلاب برای بیمارستان الزامی است .

۴۲ ارتفاع موتورخانه بیمارستان ، حداقل ۴ متر ، الزامی است .

– ۴۳ وجود فضایی محصور با قابلیت تامین هوای تازه نظیر اتاق برای هواسازها الزامی است .

– ۴۴ وجود فضای ایستگاه گاز برای بیمارستان الزامی است .

– ۴۵ وجود فضایی برای استراحت و استقرار پرسنل موتورخانه با پیش بینی فضای سرویس بهداشتی و دوش الزامی است .

– ۴۶ کلیه موتورخانه ها به سیستم هوشمند کنترل دما مجهز گردد .

– ۴۷ جهت تعمیر و نگهداری تاسیسات و تجهیزات سرمایش و گرمایش از برنامه ای منظم و مدون استفاده گردد.

 


 

ضوابط تاسیسات الکتریکی در بیمارستانها وفضاهای درمانی 

 

۱ چراغ های روشنائی درصورتی که درسقف کاذب نصب میشوند ،با سیم مفتول به سازه سقف اصلی مهارگردند در صورت روکاربودن باید، توسط پیچ و رولپلاک به تعداد کافی  نصب گردد.

-۲ درفضاهای مختلف ، مسیر فرار ازهربخش تا پله فرار با چراغ ایمنی که توسط UPS تغذیه میشود ،مشخص گردد. لازم به توضیح است که نصب این چراغ ها باید بصورت آویز از سقف اصلی ومتحرک باشد. همچنین برق رسانی به چراغ های ایمنی توسط سیم نسوز انجام گردد.

-۳ تاییدیه مبنی بر رعایت استانداردها درطراحی وساخت اتاق ترانسفورمر از برق منطقه ای دریافت گردد. بهتر است فضای درنظرگرفته شده جهت اتاق ترانسفورمر خارج از ساختمان اصلی بیمارستان قرارگیرد.

-۴ کلیه ضوابط و استانداردها درطراحی وساخت اتاق دیزل ژنراتور رعایت شده باشد واتاق دارای هیترو دمپر باشد. همچنین سازه درنظرگرفته شده درزیر دیزل ژنراتور می بایستی به سیستم ارت متصل شود .

-۵ مخزن سوخت مولد برق اضطراری با ظرفیت مناسب پیش بینی گردد

-۶ شرایط نگهداری سوخت مولد برق اضطراری مطمئن و ایمن باشد

-۷ مولد برق اضطراری پرتابل در دسترس باشد.

-۸ کلیه تابلوهای ایستاده می بایستی بصورت صحیح و اصولی روی شاسی مناسب نصب و مهار گردد وقابلیت دسترسی به پشت تابلو با فاصله استاندارد داشته باشد.

-۹ سیستم ارت باسازه اصلی ولوله های تاسیسات متصل باشد همچنین این سیستم بصورت مش اطراف ساختمان باتعداد چاه مورد نیاز اجرا گردد. -.

-۱۰  تمامی کابلها ازاتاق برق اصلی توسط سینی کابل باتعداد ساپورت استاندارد به تابلوهای فرعی انتقال داده میشود. فاصله کابل ها ازیکدیگر روی سینی کابل می بایستی استاندارد باشد وباگیره مخصوص مهارگردد.

-۱۱ اینترلاک لازم در تابلوی تاسیسات مکانیکی واعلام حریق درنظرگرفته شود.

-۱۲ کلید ها و پریزهای برق سالم ، ایمن ، مطمئن ، ضد جرقه )در محل های مورد نظر(،واترپروف )در محل های مورد نظر( و دارای اتصال زمین باشد

-۱۳ اتاق  UPS باید ضد حریق باشد تا درشرایط بحران، برق قسمت های حساس را تامین نماید.

-۱۴ تمام کابل های دیتا ، فویل دار باشد.

-۱۵ روشنائی در اتاق گازهای طبی، ضد انفجار درنظرگرفته شود.

-۱۶ کلیه تابلوها دارای لوازم اندازه گیری شامل ولتامتر، آمپرمترو چراغ سیگنال باشد .

-۱۷ تابلوی خازن بصورت مداوم چک شود . این کنترل توسط قبوض برق نیز امکان پذیر میباشد.

-۱۸ تمامی تابلوها می بایستی دارای فازهای بالانس باشند وهمچنین خطوط لیبل گذاری شده ونقشه دردرب تابلو باشد.

-۱۹ تمامی اگزاست ها دارای کلید ایزولاتور باشد.

-۲۰ نصب صاعقه گیر در بیمارستان الزامی است .

-۲۱ دستگاه مرکز تلفن در محلی بدور از نویز و بصورت مناسب تثبیت گردد. همچنین فضای کافی در اطراف دستگاه جهت تعمیرات در نظر گرفته شود.

-۲۲ سیستم روشنایی در قسمت مراقبتهای ویژه می بایست توسط دیمر قابل تنظیم باشد

-۲۳ وجود برق ایزوله برای بخش جراحی ،زایمان و مراقبتهای ویژه الزامیست.

-۲۴ در تابلوهای برق فیوز کش مناسب نصب شود

-۲۵ کابل های برق به طور مطمئن از لوله های حاوی گاز و بخار و آب فاصله داشته باشد.

۲۶- سیستم پیجینگ بیمارستان استاندارد بوده و قابلیت ارائه پوشش لازم برای کل بیمارستان را داشته باشد.

-۲۷ تاییدیه از موسسه استاندارد برای آسانسور ها و بالابر ها به لحاظ استاندارد بودن ،ایمنی ، نگهداری و محافظت اخذ گردد.

-۲۸ سنسورهای لرزه سنج زلزله حتما برای آسانسور درفضای چاهک و یا موتورخانه پیش بینی گردد.

منبع:hospital-ir.com

برق خورشیدی

 

 

برق خورشیدی(نیروگاه خورشیدی)

 

url544

 

 

چند سالی است که بر اثر آلودگی های حاصل از مصرف سوخت های فسیلی مانند ذغال سنگ و نفت و گاز مبحث تولید برق از انرژی های تجدید پذیر اهمیت پیدا کرده و تحقیقات فروانی در این زمینه صورت گرفته است. دو نوع مهم از این نوع انرژی که در سطح زمین به وفور یافت می شودانرژی خورشیدی و بادی است .

انرژی خورشیدی

با وجود آنکه انرژی خورشید و مزایای آن در قرون گذشته به خوبی شناخته شده بود ولی بالا بودن هزینه اولیه چنین سیستم‌هایی از یک طرف و عرضه نفت و گاز ارزان از طرف دیگر سد راه پیشرفت این سیستم‌ها شده بود تا اینکه افزایش قیمت نفت در سال ۱۹۷۳۳ باعث شد که کشورهای پیشرفته صنعتی مجبور شدند به مسئله تولید انرژی از راه‌های دیگر (غیر از استفاده سوختهای فسیلی) توجه جدی‌تری نمایند.

کاربردهای الکتریکی فتوولتایک‌ها را آزمایش می‌کنند، یک فرایند که توسط آن انرژی نور خورشید به طور مستقیم به الکتریسیته تبدیل می‌شود. الکتریسیته می‌تواند به طور مستقیم از انرژی خورشید تولید شود و ابزارهای فتوولتایک استفاده کند یا به طور غیر مستقیم از ژنراتورهای بخار ذخایر حرارتی خورشیدی را برای گرما بخشیدن به یک سیال کاربردی مورد استفاده قرار می‌دهند.

پتانسیل خورشیدی

تقریبا نیمی از انرژی که به سمت زمین می‌آیند جذب سطح زمین می‌شوند.
میانگین تابش خورشیدی بر سطح زمین. انرژی خورشیدی تئوری قابل دریافت سطوح نقاط سیاه که روی نگاره زمین وجود دارد به تنهایی برای تأمین ۱۸ تراوات انرژی مصرفی جهان کافیست.

انرژی تولید شده توسط خورشید

خورشید از گازهایی نظیر هیدروژن (۷۳٫۴۶درصد) هلیوم (۲۴٫۸۵ درصد) و عناصر دیگری تشکیل شده است که از جمله آن‌ها می‌توان به اکسیژن، کربن، نئون و نیتروژن اشاره نمود.

انرژی ستاره خورشید یکی از منابع عمدهٔ انرژی در منظومه شمسی می‌باشد. طبق آخرین برآوردهای رسمی اعلام شده عمر این منبع انرژی بیش از ۱۴ میلیارد سال می‌باشد. در هر ثانیه ۲/۴۴ میلیون تن از جرم خورشید به انرژی تبدیل می‌شود. با توجه به جرم خورشید که حدود ۳۳۳۳ هزار برابر جرم زمین است. این کره نورانی را می‌توان به‌عنوان منبع عظیم انرژی تا ۵۵ میلیارد سال آینده به حساب آورد.

میزان دما در مرکز خورشید حدود ۱۰ تا ۱۴ میلیون درجه سانتیگراد می‌باشد که از سطح آن با حرارتی نزدیک به ۵۶۰۰۰ درجه و به صورت امواج الکترومغناطیسی در فضا منتشر می‌شود.

زمین در فاصله ۱۵۰ میلیون کیلومتری خورشید واقع است و ۸ دقیقه و ۱۸ ثانیه طول می‌کشد تا نور خورشید به زمین برسد؛ بنابراین سهم زمین در دریافت انرژی از خورشید میزان کمی از کل انرژی تابشی آن می‌باشد. سرمنشاء تمام اشکال مختلف انرژیهای شناخته شده تاکنون شامل (سوختهای فسیلی ذخیره شده درزمین، انرژی‌های بادی، آبشارها، امواج دریاها و…) موجود در کره زمین از  خورشید می‌باشد.

انرژی خورشید همانند سایر انرژی‌ها بطور مستقیم یا غیر مستقیم می‌تواند به دیگر اشکال انرژی تبدیل شود، همانند گرما و الکتریسیته و… ولیکن موانعی شامل (ضعف علمی و تکنیکی در تبدیل بعلت کمبود دانش و تجربه میدانی – متغیر و متناوب بودن مقدار انرژی به دلیل تغییرات جوی و فصول سال و جهت تابش – محدوده توزیع بسیار وسیع) موجب گردیده تا استفاده کمی از این انرژی صورت گیرد.

استفاده ازمنابع عظیم انرژی خورشید برای تولید انرژی الکتریسته، استفاده دینامیکی، ایجاد گرمایش محوطه‌ها و ساختمانها، خشک کردن تولیدات کشاورزی و تغییرات شیمیایی و… اخیراً شروع گردیده‌است.

انرژی خورشیدی

انرژی خورشیدی منحصربه‌فردترین منبع انرژی تجدیدپذیر در جهان است و منبع اصلی تمامی  انرژی‌های موجود در زمین می‌باشد. انرژی خورشیدی به صورت مستقیم و غیرمستقیم می‌تواند به اشکال دیگر انرژی تبدیل گردد. به‌طور کلی انرژی متصاعد شده از خورشیدی در حدود ۳٫۸ در ۱۰۲۳ کیلووات در ثانیه می‌باشد.

ایران با داشتن حدود ۳۰۰ روز آفتابی در سال جزو بهترین کشورهای دنیا در زمینه پتانسیل انرژی خورشیدی در جهان می‌باشد. با توجه به موقعیت جغرافیای ایران و پراکندگی روستای در کشور،  استفاده از انرژی خورشیدی یکی از مهمترین عواملی است که باید مورد توجه قرار گیرد. استفاده از انرژی خورشیدی یکی از بهترین راه‌های برق رسانی و تولید انرژی در مقایسه با دیگر مدل‌های انتقال انرژی به روستاها و نقاط دور افتاده در کشور از نظر هزینه، حمل‌نقل، نگهداری و عوامل مشابه می‌باشد.

با توجه به استانداردهای بین‌المللی اگر میانگین انرژی تابشی خورشید در روز بالاتر از ۳٫۵ کیلووات ساعت در مترمربع (۳۵۰۰۰ وات/ساعت) باشد استفاده از مدلهای انرژی خورشیدی نظیر کلکتورهای  خورشیدی یا سیستم‌های فتوولتائیک بسیار اقتصادی و مقرون به صرفه است.

در بسیاری از قسمتهای ایران انرژی تابشی خورشید بسیار بالاتر از این میانگین بین‌المللی می‌باشد و در برخی از نقاط حتی بالاتر از ۷ تا ۸ کیلو وات ساعت بر مترمربع اندازه‌گیری شده است ولی بطور متوسط انرژی تابشی خورشید بر سطح سرزمین ایران حدود ۴٫۵ کیلو وات ساعت بر مترمربع است.[۱]

انرژی حرارتی خورشیدی

آبگرمکن‌های خورشیدی و حمام خورشیدی

Calefon solar termosifonico compacto.jpg

 
نوشتار اصلی: آبگرمکن خورشیدی

تولید آب گرم تهیه آب گرم بهداشتی در منازل و اماکن عمومی به خصوص در مکانهایی که مشکل  سوخت رسانی وجود دارد استفاده کرد. چنانچه ظرفیت این سیستمها افزایش یابد می‌توان از آنها در حمامهای خورشیدی نیز استفاده نمود. تاکنون با توجه به موقعیت جغرافیایی ایران تعداد زیادی آب گرمکن خورشیدی و چندین دستگاه حمام خورشیدی در نقاط مختلف کشور از جمله استان‌های خراسان، سیستان و بلوچستان، یزد و کرمان نصب و راه‌اندازی شده‌است.

گرمایش و سرمایش ساختمان و تهویه مطبوع خورشیدی

اولین خانه خورشیدی در سال ۱۹۳۹ساخته شد که در آن از مخزن گرمای فصلی برای بکارگیری  گرمای آن در طول سال استفاده شده‌است. گرمایش و سرمایش ساختمانها با استفاده از انرژی خورشید، ایده تازه‌ای بود که در سالهای ۱۹۳۰ مطرح شد و در کمتر از یک دهه به پیشرفتهای قابل توجهی رسید. با افزودن سیستمی معروف به سیستم تبرید جذبی به سیستم‌های خورشیدی می‌توان علاوه بر آب گرم مصرفی و گرمایش از این سیستم‌ها در فصول گرما برای سرمایش ساختمان نیز استفاده کرد.

آب شیرین کن خورشیدی

هنگامی که حرارت دریافت شده از خورشید با درجه حرارت کم‌روی آب شور اثر کند تنها آب تبخیر  شده و املاح باقی می‌ماند.

سپس با استفاده از روشهای مختلف می‌توان آب تبخیر شده را تنظیم کرده و به این ترتیب آب شیرین تهیه کرد. با این روش می‌توان آب بهداشتی مورد نیاز در نقاطی که دسترسی به آب شیرین ندارند مانند جزایر را تأمین کرد.

آب شیرین کن خورشیدی در دو اندازه خانگی و صنعتی ساخته می‌شوند. در نوع صنعتی با حجم بالا  می‌توان برای استفاده شهرها آب شیرین تولید کرد.

خشک کن خورشیدی

خشک کردن مواد غذایی برای نگهداری آنها از زمانهای بسیار قدیم مرسوم بوده و انسان‌های نخستین  خشک کردن را یک هنر می‌دانستند.

خشک کردن عبارت است از گرفتن قسمتی از آب موجود در مواد غذایی و سایر محصولات که باعث  افزایش عمر انباری محصول و جلوگیری از رشد باکتریها می‌باشد. در خشک کن‌های خورشیدی بطور مستقیم و یا غیر مستقیم از انرژی خورشیدی جهت خشک نمودن مواد استفاده می‌شود و هوا نیز به صورت طبیعی یا اجباری جریان یافته و باعث تسریع عمل خشک شدن محصول می‌گردد. خشک کن‌های خورشیدی در اندازه‌ها و طرحهای مختلف و برای محصولات و مصارف گوناگون طراحی و ساخته می‌شوند.

اجاق‌های خورشیدی

دستگاه‌های خوراک پز خورشیدی اولین بار بوسیله شخصی بنام نیکلاس ساخته شد. اجاق او شامل یک جعبه عایق بندی شده با صفحه سیاه رنگی بود که قطعات شیشه‌ای درپوش آن را تشکیل می‌داد اشعه خورشید با عبور از میان این شیشه‌ها وارد جعبه شده و بوسیله سطح سیاه جذب می‌شد سپس درجه حرارت داخل جعبه را به ۸۸ درجه افزایش می‌داد. اصول کار اجاق خورشیدی جمع‌آوری پرتوهای مستقیم خورشید در یک نقطه کانونی و افزایش دما در آن نقطه می‌باشد. امروزه طرح‌های متنوعی از این سیستم‌ها وجود دارد که این طرح‌ها در مکان‌های مختلفی از جمله آفریقای جنوبی آزمایش شده و به نتایج خوبی نیز رسیده‌اند. استفاده از این اجاق‌ها به ویژه در مناطق شرقی ایران که با مشکل کمبود سوخت مواجه می‌باشند بسیار مفید خواهد بود.

کوره خورشیدی

در قرن هجدهم نوتورا اولین کوره خورشیدی را در فرانسه ساخت و بوسیله آن یک تل چوبی را در فاصله ۶۰۰ متری آتش زد.

بسمر پدر فولاد جهان نیز حرارت مورد نیاز کوره خود را از انرژی خورشیدی تأمین می‌کرد. متداولترین سیستم یک کوره خورشیدی متشکل از دو آینه یکی تخت و دیگری کروی می‌باشد. نور خورشید به آینه تخت رسیده و توسط این آینه به آینه کروی بازتابیده می‌شود. طبق قوانین اپتیک هر  گاه دسته پرتوی موازی محور آینه با آن برخورد نماید در محل کانون متمرکز می‌شوند به این ترتیب انرژی حرارتی گسترده خورشید در یک نقطه جمع می‌شود که این نقطه به دماهای بالایی می‌رسد. امروزه پروژه‌های متعددی در زمینه کوره‌های خورشید در سراسر جهان در حال طراحی و اجراء می‌باشد.

خانه‌های خورشیدی

ایرانیان باستان از انرژی خورشیدی برای کاهش مصرف چوب در گرم کردن خانه‌های خود در زمستان استفاده می‌کردند. آنان ساختمانها را به ترتیبی بنا می‌کردند که در زمستان نور خورشید به داخل اتاقهای نشیمن می‌تابید ولی در روزهای گرم تابستان فضای اتاق در سایه قرار داشت. در اغلب فرهنگ‌های دیگر دنیا نیز می‌توان نمونه‌هایی از این قبیل طرحها را مشاهده نمود. در سالهای بین دوجنگ جهانی در اروپا و ایالات متحده طرحهای فراوانی در زمینه خانه‌های خورشیدی مطرح و آزمایش  شد. از آن زمان به بعد تحول خاصی در این زمینه صورت نگرفت. حدود چند سالی است که معماران بطور جدی ساخت خانه‌های خورشیدی را آغاز کرده‌اند و به دنبال تحول و پیشرفت این تکنولوژی به نتایج مفیدی نیز دست یافته‌اند مثلاً در ایالات متحده در سال ۱۸۹۰ به تنهایی حدود ۱۰ تا ۲۰ هزار خانه خورشیدی ساخته شده‌است. در این گونه خانه‌ها سعی می‌شود از انرژی خورشید برای روشنایی – تهیه آب گرم بهداشتی – سرمایش و گرمایش ساختمان استفاده شود و با بکار بردن مصالح ساختمانی مفید از اتلاف گرما و انرژی جلوگیری شود.

انرژی الکتریکی

می‌توان انرژی خورشیدی را به الکتریسیته تبدیل کرد برای این کار دو روش اصلی وجود دارد. یک روش استفاده از حرارت خورشیدی و روش دیگر استفاده از صفحات خورشیدی فتوولتاییک می‌باشد.

نیروگاه حرارتی-خورشیدی

تأسیساتی که با استفاده از آنها انرژی جذب شده حرارتی خورشید به الکتریسیته تبدیل می‌شود، نیروگاه حرارتی خورشیدی نامیده می‌شود. در نیروگاه‌های حرارتی خورشیدی وظیفه اصلی بخش‌های خورشیدی تولید بخار مورد نیاز برای تغذیه توربین‌ها است یا به عبارت دیگر می‌توان گفت که این نوع نیروگاه‌ها شامل دو قسمت هستند:

  • سیستم خورشیدی که پرتوهای خورشید را جذب کرده و با استفاده از حرارت جذب شده تولید بخار می‌نماید.
  • سیستمی موسوم به سیستم سنتی که همانند دیگر نیروگاه‌های حرارتی بخار تولید شده را توسط توربین و ژنراتور به الکتریسیته تبدیل می‌کند.

این تأسیسات بر اساس انواع متمرکز کننده‌های موجود و بر حسب اشکال هندسی متمرکز کننده‌ها به چند دسته تقسیم می‌شوند:

  1. نیروگاه‌هایی که گیرنده آنها آینه‌های سهموی ناودانی هستند.
  2. نیروگاه‌هایی که گیرنده آنها در یک برج قرار دارد و نور خورشید توسط آینه‌های بزرگی به نام هلیوستات به آن منعکس می‌شود. (دریافت کننده مرکزی)
  3. نیروگاه‌هایی که گیرنده آنها بشقابی سهموی (دیش) می‌باشد.
  4. دودکش خورشیدی

تولید برق خورشیدی فتو ولتاییک

نوشتار اصلی: فتو ولتاییک

 

فتوولتائیک نصب شده

فتو ولتاییک یا به اختصار PV، یکی از انواع سامانه‌های تولید برق از نور خورشید می‌باشد. در این روش با بکارگیری سلول‌های خورشیدی، تولید مستقیم الکتریسیته از تابش خورشید امکان‌پذیر می‌شود.

 

انرژی باد

 باد هوای در حال حرکت است. باد به وسیله‌ی جذب گرمای نیم یکنواخت سطح کره‌ی زمین که حاصل عملکرد خورشید است به وجود می‌آید.

از آنجاییکه سطح زمین از سازنده‌های خشکی و آبی متنوع تشکیل شده‌اند، اشعه‌ی خورشید را به طور یکنواخت جذب می‌کنند. وقتی خورشید در طول روز می‌تابد، هوای روی سرزمین‌های خشکی سریعتر از هوای روی سرزمین‌های آبی گرم می‌شود.

هوای گرم روی خشکی سبک شده و بالا می‌رود و هوای خنک‌تر و سنگین‌تر روی آب جای آن را می‌گیرد که این فرآیند بادهای محلی را می‌سازد.

در شب از آنجا که هوای روی خشکی سریعتر از هوای روی آب خنک می‌شود، جهت باد برعکس می‌شود. از آنجا که باد تا زمانی که خورشید به زمین می‌تابد، به طور پیوسته تولید خواهد شد، آن را منبع انرژی تجدید شونده می‌نامند.

امروزه انرژی باد عمدتا” برای تولید برق به کار برده می‌شود. در طول تاریخ، انسان‌ها باد را به شیوه‌های مختلف به کار برده‌اند. بیش از پنج هزار سال پیش مصریان باستان از نیروی باد برای راندن کشتی‌های خود روی رود نیل استفاده کردند. بعد از آن انسان، آسیاب بادی را برای آسیاب کردن غلات ساخت. آسیاب‌های بادی چون سرعت باد را کم می‌کنند، می‌توانند کار کنند. باد روی تیغه‌های ورقه مانند نازکی جریان یافته و آنها را بلند می‌کند و باعث چرخش آنها می‌شود (مانند تاثیر باد روی بال های هواپیما) تیغه‌ها به میله‌ی هدایت متصل است و آن فیزیک مولد برق را چرخانده و الکتریسیته تولید می‌کند.

بهترین محل برای نصب یا ساخت دستگاه بادی محلی است که سرعت باد حدود ۲۳ کیلومتر بر ساعت باشد. ماشین‌های بادی ۳۰ تا ۴۰ درصد انرژی متحرک باد را به برق تبدیل می‌کند، در‌حالی که یک دستگاه مولد زغال سوز، حدود ۳۰ تا ۳۵ درصد انرژی شیمیایی زغال را به الکتریسیته قابل استفاده تبدیل می‌کند.

 

کتابچه آموزشی  انرژی باد( ۱)  از سازمان انرژی ‌های نو ایران –  سانا ( دریافت فایل PDF)

  1. تعریف باد
  2. اثرات اقتصادی برق بادی
  3. توسعه جهانی و بهره‌گیری از پتانسیل عظیم برق‌بادی
  4. مطالعات امکان‌سنجی احداث نیروگاه بادی
  5. نحوه آرایش توربین‌های بادی
  6. انرژی باد و توربین‌های بادی
  7. نیروگاه‌های بادی
  8. توربین‌های بادی
  9. دکل باد سنجی
  10. توربین بادی با محور افقی
  11. هزینه‌های زیست محیطی
  12. انرژی باد در ایران

 

کتابچه آموزشی  انرژی باد( ۲)  از سازمان انرژی ‌های نو ایران – سانا (دریافت فایلPDF)

 

فصل اول: کلیاتی درباره انرژی باد

  1. انرژی باد
  2. تاریخچه استفاده از انرژی باد
  3. منشاء باد
  4. توزیع جهانی باد
  5. اندازه گیری پتانسیل انرژی باد
  6. قدرت باد
  7. روند تحولات تکنولوژی انرژی باد در سال‌های اخیر
  8. مزایای بهره‌برداری از انرژی باد
  9. آینده انژی باد در ایران

  فصل دو: پتانسیل سنجی سطحی انرژی باد

  1. پتانسیل سنجی چیست
  2. باد سنجی‌ها و انواع آنها
  3. پتانسیل باد در ایران
  4. نقشه‌ها و اطلس‌های موجود باد

 فصل سوم: استحصال انرژی از باد توسط توربین‌های بادی

  1. انرژی بادی و توربین‌های بادی
  2. انواع توربین‌های باد
    • توربینهای بادی با محور چرخش  عمودی
    • توربینهای بادی با محور چرخش افقی
  3. انواع کاربرد توربین‌های بادی
    • کاربردهای غیر نیروگاهی
    • کاربردهای نیروگاهی
  4. توربینهای بادی با ذخیره انرژی

فصل چهارم: انرژی باد و محیط زیست

 طراحی و ساخت توربین بادی ۲ مگاواتی ملی

   
   
   
   
   
   
   
   

 

بر اساس اهداف وزارت نیرو در ورود به حوزه فناوری توربینهای بادی بعنوان یکی از منابع تامین انرژی و توسعه بومی فناوری توربینهای بادی و بدنبال انجام پروژه مطالعات مقدماتی و طراحی مفهومی طراحی و ساخت توربین بادی ملی، پروژه ملی طراحی و ساخت توربین بادی مگاواتی ملی در سال ۱۳۸۷ آغاز گردید. سازمان مادرتخصصی توانیر کارفرمای پروژه می‌باشد.

انرژی خورشیدی، تولید برق از نور خورشید است. این می تواند به صورت مستقیم باشد مثل فوتوولتیک (photovoltaics) یا غیر مستقیم باشد با تمرکز انرژی خورشیدی (CSP)، که در آن انرژی خورشید را متمرکز کرده تا آب جوش بیاید و از آن برای تولید برق استفاده می کنند.
فوتوولتیک
سلول های خورشیدی یا سلول فوتوولتیک، دستگاهی است که نور را با استفاده از اثر فوتوالکتریک به جریان الکتریکی تبدیل می کند. این اثر بر اساس کشف الکساندر – ادموند بکرل استوار است که متوجه شد برخی از مواد بر اثر برخورد فوتون نور الکترون آزاد می کنند که این باعث تولید جریان برق می شود. سلول های خورشیدی اولین بار توسط چارلز فیتس در سال ۱۸۸۰ ساخته شد. این سلول های سلنیومی (selenium) کمتر از یک درصد از نور تابیده شده را به جریان الکتریکی تبیل می کردند. در سال ۱۹۴۰، سه محقق به نام های جرالد پیرسون و کالوین فولرو و دارین چاپین سلول خورشیدی سیلیکونی را ساختند. در اوایل هزینه این سلولهای خورشیدی ۲۸۶ دلار به ازای هر وات برق بود و بازده به ۴٫۵ تا ۶ درصد می رسید. در اواخر سال ۲۰۰۹ ، بالاترین بازده سلول PV توسط شرکت بوئینگ و SpectroLabبه صورت تجاری تولید شد که در حدود ۴۱ درصد است. فیلم های نازک سلول PV توسعه یافته اند که به صورت فله ساخته شده است و به مراتب ارزان تر و شکننده تر است، اما در اغلب در حدود ۲۰ درصد بازده ای دارند. توسعه های اخیر نمایشی تجربی از طراحی جدید است که دارای ۸۵ درصد بازده ای در نور مستقیم آفتاب و ۹۵ درصد بازده ای در طول موج خاص است. این فقط در نمونه های آزمایشگاهی تولید شده است، اما ممکن است امکان تولید انبوه و با قیمت پایین را در آینده داشته باشد.تمرکز انرژی خورشیدی
تمرکز انرژی خورشیدی (CSP)، سیستمی متشکل از لنزهای آینه ای و سیستم های ردیابی است که به تمرکز منطقه بزرگی از نور خورشید در یک پرتو کوچک می پردازد. حرارت متمرکز شده به عنوان منبع گرما برای نیروگاه معمولی استفاده می شود. طیف وسیعی از فن آوری های تمرکز وجود دارد که پیشرفته ترین آنها تغار سهموی، ظرف استرلینگ و برج انرژی خورشیدی است. تکنیک های مختلفی برای جمع آوری نور خورشید و تمرکز استفاده می شوند. در تمامی این سیستمها یک سیال توسط نور خورشید متمرکز شده گرم می شود، و سپس از آن برای تولید قدرت و یا ذخیره سازی انرژی استفاده می گردد.روش های ذخیره سازی انرژی
انرژی خورشیدی که در شب وجود ندارد، پس ذخیره سازی انرژی یک موضوع مهم به منظور ارائه دسترسی مداوم به انرژی است. انرژی خورشیدی جزء منابع انرژی غیر دائمی‌ است. این بدین معنی است که تا وقتی در دسترس است باید از آن استفاده کرد یا برای استفاده آینده ذخیره کرد و یا به جایی که می تواند مورد استفاده قرار گیرد، منتقل کرد.
در سیستم های PV به طور سنتی از باتری های قابل شارژ برای ذخیره برق اضافی استفاده می شود. شبکه ای با سیستم های گره خورده می تواند برق مازاد را به شبکه انتقال ارسال کند.

انرژی باد | انجمن بهینه سازی مصرف انرژی ایران

 

سازماندهی و بر اساس نتایج مطالعات فاز صفر، جذب تیم متخصص، برنامه ریزی جهت همکاری با مشاورین خارجی، بازرسان بین المللی و ملزومات دیگر صورت گرفت.

در فاز بعدی که طراحی مفهومی توربین می باشد، مشخصات کلی توربین و اجزاء اصلی تعیین و ساختار انتقال قدرت نهایی گردید. همچنین در این فاز اطلاعات توربینهای بادی مگاواتی تجاری سراسر جهان مطالعه گردیده است. مطالعات نهایی سازی تعیین کلاس توربین ملی بر اساس داده‌های باد کل کشور بود که منجر به تعیین محل سایتهای برتر و نیز کلاس هر سایت گردید.

در خصوص انتقال و مدیریت تکنولوژی, مشاورین دارای توانمندی همکاری مورد مذاکرات متعدد قرار گرفته و از آنها پیشنهادهای فنی و مالی دریافت گردید.

در طراحی مفهومی، یک مدل اولیه هندسی از توربین و مشخصات تقریبی آن تهیه گردید و بر مبنای آن، مدلهای دینامیکی ساخته شد و مورد مطالعه قرار گرفت.

در فاز طراحی مقدماتی، توربین به چند بخش بر اساس گوناگونی عملکردی و ساختاری تقسیم بندی شد و با تخصیص نیروی متخصص متناسب با هر بخش، طراحی مقدماتی توربین آغاز گردید. تیم های متشکل با انجام فرایندهای متعدد طراحی، موفق به دست یابی به دانش طراحی اجزاء و کل سیستم توربین بادی گردیدند. همچنین مدل هندسی توربین شامل سطح ۲ جزئیات اجزاء تهیه و رونمایی گردید. ابعاد و مشخصات فنی بیشتر اجزا برای انجام فرایند تامین، معین شد. استانداردهای طراحی، ساخت و تست هریک از بر اساس استاندرادهای بین المللی و الزامات ملی یا درون سازمانی تعیین و تصویب گردید. سازندگان یا تامین کنندگان اجزاء شناسایی گردید. توان فنی کشور در ساخت اجزاء مورد ارزیابی قرار گرفت و نقشه ورود به طراحی تفصیلی توربین مشخص گردید.

در ادامه انجام مراحل پروژه، فاز طراحی تفضیلی آغاز گردیده و از اواسط سال ۱۳۹۱، فاز اجرایی ساخت توربین با تامین، تدارک و ساخت اجزا آن آغاز خواهد گردید. همچنین طبق برنامه پیش بینی شده، توربین بادی مگاواتی ملی گواهی صحت طراحی و عملکرد را از معتبرترین موسسات بین المللی در این صنعت اخذ خواهد نمود. بدین ترتیب نه تنها توربین بادی مگاواتی ملی، قابلیت بهره برداری در بازار داخلی را خواهد داشت بلکه می توان بخشی از بازارهای فرامرزی را نیز مورد هدف قرار داد. در طراحی این توربین توانمندیهای صنعتی کشور و آخرین دست آوردهای جهانی صنعت توربین همزمان لحاظ خواهد گردید و توربین بادی مگاواتی ملی با توجه به شرایط اقلیمی سیاست های بادی کشور، بهترین عملکرد را خواهد داشت.

مکانیزم پیدایش باد و انواع کاربردهای انرژی بادی

تشعشعات دریافتی خورشید توسط زمین، موجب گرم شدن هوای اتمسفر شده و به همین دلیل هوا به سمت بالا حرکت می کند. شدت این گرمایش در استوا؛ جایی که خورشید عمود می تابد؛ بیشتر از هوای اطراف قطبین؛ جایی که زاویه تابش خورشید تند می باشد؛ خواهد بود و هوای اطراف قطبین نسبت به هوای استوا کمتر گرم می گردد .دانسیته هوا با افزایش دما کاهش پیدا کرده و بنابراین هوای سبکتر استوا به سمت بالا حرکت کرده و در اطراف پخش می گردد. این عمل موجب افت فشار در این ناحیه گردیده و موجب می گردد هوای سرد از قطبین به سمت استوا جذب گردند.

همچنین وقتی خورشید در طول روز می‌تابد، هوای روی سرزمین‌های خشک سریعتر از هوای روی دریا ها و آب ها گرم می‌شود. هوای گرم روی خشکی بالا رفته و هوای خنک تر و سنگین تر روی آب جای آنرا می‌گیرد که این فرآیند بادهای محلی را می‌سازد این به آن معناست که روز از سمت دریا به سمت ساحل باد می وزد. در شب، از آنجا که هوا روی خشکی سریعتر از هوای روی آب خنک می‌شود، جهت باد برعکس می‌شود. بنابراین باد به علت گرادیان فشار به وجود آمده از تابش غیر یکنواخت خورشید به سطح زمین به وجود می آید.

 

امروزه از انرژی بادی جهت تولید الکتریسیته، پمپاژ آب از چاهها و رودخانه ها، آرد کردن غلات، کوبیدن گندم، گرمایش خانه و مواردی نظیر اینها می توان استفاده نمود. استفاده رایج از انرژی بادی در توربین های بادی و به منظور تولید الکتریسته بکار گرفته می شوند.

کاربردهای توربین بادی

  •          کاربردهای منفصل از شبکه

o        شارژ باتری

o        تولید توان در نواحی دور افتاده

o        تامین انرژی مورد نیاز پایگاههای موقتی

o        تامین برق موردنیاز برای قایقهای تفریحی

  •          کاربردهای متصل به شبکه

o        توربین های بادی منفرد

o        مزارع بادی

تاریخچه انرژی بادی

 آغاز استفاده از انرژی باد(۱۰۰۰ سال قبل از میلاد مسیح تا ۱۳۰۰ سال بعد از میلاد مسیح) 

تاریخچه انرژی بادی یک سیر تکاملی را به استفاده از قطعات سبک و ساده برای به حرکت درآوردن پره ها بوسیله نیروی درگ، به جای قطعات سنگین پیش گرفته است تا استفاده از قطعات سبک و مواد ایرودینامیکی پر بازده در دوران مدرن امروزی رواج پیدا کند.اما نباید اینگونه پنداشت که نیروی لیفت(نیرویی که باعث پرواز هواپیما می گردد) یک مفهوم جدید می باشد و برای باستانیان ناشناخته بوده است. اولین استفاده شناخته شده از انرژی باد مربوط به کاربرد در قایقهای بادی است و این تکنولوژی نقش بسیار مهمی در توسعه آسیابهای بادی دارد. ملوانان باستانی نیروی لیفت را می شناختند و روزانه از آن استفاده می کردند ولو اینکه هیچ توضیحی علمی برای آن نداشتند.اولین آسیابهای بادی برای آسیاب کردن غلات و پمپاژ آب به کار گرفته شده بودند و قدیمیترین مدل طراحی شده آن از نوع محور عمودی بوده که در طی سالهای ۹۰۰-۵۰۰ میلادی در ایران توسعه یافته است. ظاهرا اولین استفاده از این آسیابها برای پمپاژ آب بوده است ولی نحوه دقیق کار آن معلوم نیست زیرا هیچ گونه طراحی و یا نقاشی از این آسیابها موجود نیست.نخستین مستندات مربوط به طراحی این آسیابهای بادی نیز مربوط به ایرانیان می باشد. که پره های آن یا اصطلاحا بادبانهای آنها از جنس چوب و یا نی بوده که با تیرهای افقی به یک محور عمودی متصل می شدند مطابق شکل زیر:

آسیاب نمودن غلات اولین استفاده مستند شده و بسیار ساده آسیابهای بادی می باشد. به طوری که سنگ آسیاب به همان محور عمودی متصل می شده است. کلیه قسمتهای آسیاب بادی معمولا در داخل یک ساختمان محصور می شده اند و ورودی ساختمان در جهت وزش باد فضای بازی داشته تا باد بتواند به سمت داخل هدایت شود.

آسیابهای بادی محور عمودی در چین هم مورد استفاده قرار می گرفتند و چینیان ادعای تخصیص این نوع آسیابها را به زادگاه خود دارند. این در حالی است که به طور دقیق می توان گفت اولین مستندات آنها مربوط به سال ۱۲۱۹ میلادی می باشد که توسط یک سیاستمدار چینی با نام Yehlu Chhu-Tshai اختراع شده است. در این کشور هم اولین کاربردهای آسیاب بادی برای آرد نمودن غلات و پمپاژ آب بوده است. یکی از خوش منظره ترین و موفق ترین کاربردهای انرژی بادی که در حال حاضر هم موجود می باشد، استفاده گسترده برای پمپاژ آب در جزیره کرت می باشد. به معنای واقعی کلمه صدها آسیاب بادی برای پمپاژ آب برای محصولات کشاورزی و استفاده دام فعال هستند.

آسیابهای بادی در غرب جهان(۱۸۷۵-۱۳۰۰ بعد از میلاد مسیح)

اولین آسیابهای بادی در غرب اروپا از نوع محور افقی بوده اند. دلیل تکامل طراحی آسیابهای بادی محور عمودی ایرانیان به محور افقی در دست نیست. اما این واقعیت هم وجود دارد که چرخآب اروپائیان پیکربندی با محور افقی داشته است و ظاهرا آنها این تکنولوژی را برای آسیابهای بادی اولیه خود نیز به خدمت گرفته اند. و یکی دیگر از دلایل شاید این باشد که راندمان نیروی درگ در سیستمهای با محور افقی بسیار بالاتر از سیستمهای با محور عمودی است. برجهای آسیابهای بادی در قرن ۱۳ طراحی جدیدی به خود گرفت. آسیابهای بادی بر بالای برجهای بزرگ سنگی که به صورت کلاهکی دوار بوده نصب می شدند بادنما نیز در پشت پره ها نصب می گردید. در اوایل سال ۱۳۹۰ میلادی هلندی ها برج های جدیدی را طراحی کردند که پیش از آن در سواحل دریا مدیترانه روئیت شده بودند. برجی که هلندی ها ساختند از چند طبقه مختلف تشکیل شده بود که شامل طبقاتی از جمله طبقه ذخیره غلات، طبقه مخصوص از بین بردن کاه، طبقه سنگ آسیاب و طبقه پائین که محلی برای زندگی آسیاببان بوده است. این آسیابهای بادی طوری طراحی شده بودند که می بایست به صورت دستی و با فشاردادن اهرمی که در پشت پره های آنها بوده به سمت باد می چرخیدند.

برای صدها سال مهمترین کاربرد آسیابهای بادی برای پمپاژ آب بوده است که برای این کار از سیستمهای کوچک با روتورهایی به طول یک تا چند متر استفاده می کردند. این سیستمها در طول قرن ۱۹ تکمیل شدند و کار خود را با آسیاب بادی Halladay در سال ۱۸۵۴ آغاز کردند و به کار خود با طرحهای موتور بادی و Dempster که هنوز هم مورد استفاده قرار می گیرند، ادامه دادند. اولین آسیابها ۴ پره چوبی داشتند که بیشتر آنها اهرمی در پشت خود داشتند تا پره ها را به سمت جهت باد بچرخانند ولی برخی از آنها برجهایشان را در مسیر باد برپا می کردند. مهمترین رویداد در آسیابهای بادی استفاده از پره های فولادی در سال ۱۸۷۰ در آمریکا بوده است، چراکه پره های فولادی سبکتر و به شکل کارآمدتری ساخته می شدند. بین سالهای ۱۸۵۰ تا ۱۹۷۰ در حدود ۶ میلیون سیستم بادی کوچک (در حدود ۱ اسب بخار و یا کمتر) تنها در آمریکا نصب گردید. استفاده اولیه آنها برای پمپاژ آب برای تهیه آب مورد نیاز آبیاری مزارع و خانه ها بوده است.

آسیابهای بادی از سال ۱۸۸۸ تا کنون در اواخر قرن ۱۹ میلادی اولین آسیاب بادی برای تولید برق طراحی گردید. این آسیاب بادی در سال ۱۸۸۸ میلادی در کلیولند اوهایو توسط Charles F. Brush ساخته شد. روتورهای این آسیاب بادی به قطر ۱۷ متر بوده که یک اهرم جانبی برای چرخاندن آن به سمت باد داشته است. و اولین آسیاب بادی بوده که گیربکسی با نسبت ۵۰:۱ و ژنراتور جریان مستقیم با RPM 500 داشته است. با وجود موفقیت نسبی این آسیاب بادی در مدت ۲۰ سال ولی محدودیتهایی در سرعت کم و استحکام بالای روتور برای تولید برق وجود داشت. میزان برق تولیدی این آسیاب بادی ۱۲ کیلوواتی با روتور ۱۷ متری در مقابل توربینهای بادی مدرن با این قطر روتور و ظرفیت ۷۰ تا ۱۰۰ کیلوواتی بسیار ناچیز می باشد. از این زمان بود که نام توربینهای بادی جایگزین آسیاب های بادی شدند.

 در سال ۱۸۹۱ میلادی فردی دانمارکی اولین سیستم بادی با پره های آیرودینامیکی را طراحی نمود و در بهترین برج آسیاب بادی به کار گرفت. سرعت بالاتر حرکت پره ها باعث تولید برق بیشتری گردید. با پایان جنگ جهانی دوم استفاده از سیستمهای بادی ۲۵ کیلوواتی در سرتاسر دانمارک رواج پیدا کرد ولی قیمت ارزان تر سوختهای فسیلی در نیروگاههای بخاری باعث شد تا استفاده از این آسیابهای بادی از رونق بیفتد. اولین توربینهای بادی کوچک برای تولید برق جریان مستقیم مورد استفاده قرار می گرفتند. این توربینها توسط دو شرکت Parris-Dunn و Jacobs Wind-electric برای استفاده در مناطق روستایی ساخته می شدند. کاربرد اولیه این سیستمها برای روشنائی مزارع و شارژ باتری ها برای استفاده در رادیو به کار می رفته است. در سال ۱۹۲۲ توربینهای محور عمودی savonius توسط مهندس فنلاندی اختراع گردید. این توربینها با نیروی درگ کار می کردند و راندمانهای آنها پایین بوده است. در سال ۱۹۲۷ میلادی توربینهای محور عمودی Darrieus طراحی گردید. در این توربینها از نیروی لیفت به جای درگ استفاده می گردید و دو یا سه پره آیرودینامیکی به محور مرکزی متصل می شده است. راندمان این توربینها نیز پایین است چرا که نیاز به سرعت بالای باد برای شروع به چرخش دارد. توربینهای بادی با ظرفیت بیشتر برای اولین بار در سال ۱۹۳۱ در روسیه توسعه یافتند. به طوری که توربینی ۱۰۰ کیلوواتی در سواحل دریای خزر در طول ۲ سال در حدود ۲۰۰ هزار کیلووات ساعت برق تولید نمود. پس از آن نیروگاههای بادی در آمریکا، دانمارک، فرانسه، آلمان و انگلستان در طول سالهای ۱۹۳۵ تا ۱۹۷۰ با توربینهای بادی در مقیاس بزرگ راه اندازی شدند. در سال ۱۹۳۱ توربینهای بادی Darrieus معروف به egg beate توسط مهندسی فرانسوی اختراع گردید.   بزرگترین توربین بادی به ظرفیت ۱٫۲۵ مگاوات در سال ۱۹۴۱ در ورمونت نصب گردید. این توربین از نوع محور افقی و با ۲ پره با قطر ۱۷۵ فوت رو به باد ساخته شده بود. روتور آن از جنس فولاد ضد زنگ و به وزن ۱۶ تن بوده و سیستم کنترل آن روی ۲۸ دور در دقیقه تنظیم شده بود. در سال ۱۹۴۵ تنها بعد از چند صد ساعت کار مداوم یکی از پره ها شکست و علت آن فقط به خاطر فرسودگی و خوردگی فلز آن بوده است.

و اما توربینهای مدرن امروزی بیشتر از نوع محور افقی و با سه پره می باشند. پره های این توربینها بسیار شبیه به بال هواپیما طراحی گردیده و از نیروی لیفت استفاده میکنند. میزان برق تولیدی آنها به ظرفیت توربین و محل قرار گیری آن مربوط می باشد. اکثر توربینهای تجاری بین ۱ تا ۲٫۵ مگاوات می باشند. با توجه به شرایط وزش باد و میزان برق مصرفی خانوارها توربینهای ۱ مگاواتی برق مورد نیاز تقریبا ۵۰۰ خانه را تامین می کنند.

پتانسیل انرژی بادی در ایران

جمهوری اسلامی ایران در بخش غربی فلات و در جنوب غرب آسیا واقع شده است. ایران با مساحت ۱۶۴۸۱۹۵ کیلومتر مربع بین طول جغرافیایی شرقی ۴۴ تا ۹۹/۶۳ درجه و عرض شمالی ۲۵ تا ۹۹/۳۹ درجه قرار گرفته و بیش از نیمی از مساحت آن را نواحی کوهستانی پوشانده است.

 این کشور با تنوع آب و هوایی زیادی روبروست. نواحی شمالی ایران دارای آب و هوای معتدل و بارندگی قابل ملاحظه به ویژه در نواحی غربی استان گیلان است. آب و هوای نواحی غربی ایران در فصول سرد، سرد و مرطوب و در فصول گرم، خشک و معتدل است. در نواحی جنوبی، دمای هوا و رطوبت بیشتر است، تابستانهای بسیار گرم و زمستانهای معتدل از مشخصات آب و هوایی این ناحیه است و تغییرات روزانه دما کمتر محسوس می باشد. نواحی شرقی و جنوب شرقی دارای آب و هوای بیابانی با تغییرات قابل ملاحظه دما در طول روز است. برای اینکه بتوان از منابع باد موجود جهت تولید برق استفاده نمود، وجود اطلاعات باد قابل اعتماد در خصوص پتانسیل باد منطقه مورد نظر جهت احداث نیروگاه بادی ضروری است.

 در ایران با توجه به وجود مناطق بادخیز، بستر مناسبی جهت گسترش بهره برداری از توربین های بادی فراهم می باشد. یکی از مهمترین پروژه های انجام شده در زمینه انرژی بادی تهیه اطلس بادی کشور بوده است که پروژه مذکور در سازمان انرژیهای نو ایران صورت گرفته و به عنوان یکی از پروژه های ملی در صنعت انرژی باد محسوب می گردد.

 طبق اطلس بادی تهیه شده و بر اساس اطلاعات دریافتی از ۶۰ ایستگاه و در مناطق مختلف کشور، میزان ظرفیت اسمی سایتها در حدود ۶۰۰۰۰ مگاوات می باشد. بر پایه پیش بینی های صورت گرفته، میزان انرژی قابل استحصال بادی کشور از لحاظ اقتصادی بالغ بر ۱۸۰۰۰ مگاوات تخمین زده می شود که موید پتانسیل قابل توجه کشور در زمینه احداث نیروگاههای بادی و همچنین اقتصادی بودن سرمایه گذاری در صنعت انرژی بادی می باشد.

 در انجام پروژه پتانسیل سنجی بادی در ایران شرکت لامایر آلمان نیز به عنوان مشاور همکاری داشته است و و بر اساس مطالعات شرکت مذکور پتانسیل بادی قابل استحصال در کشور در حدود ۱۰۰ هزار مگاوات برآورد گردیده است.

چشم انداز انرژی بادی در ایران

 در وزارت نیرو، نصب پنج هزار مگاوات نیروگاه تجدیدپذیر در قانون برنامه پنجم توسعه هدفگذاری شده است که از این میزان ۴۵۰۰ مگاوات آن برای توسعه باد در نظر گرفته شده است، می‌توان گفت در پنج سال آینده قریب به چهار هزار مگاوات بازار برای توسعه بخش خصوصی وجود خواهد داشت

 سیاست کلان کشور ما در چشم انداز برنامه‌های آتی در افزایش نقش بخش‌های غیر دولتی استوار شده است که از جمله فواید و مزایای آن کاستن از حجم و فعالیت‌های تصدی گری دولت است. با فعال شدن بخش خصوصی در عرصه احداث نیروگاه‌های بادی که جذابیت‌های فراوانی برای بخش خصوصی دارد، توان مالی، فنی و مدیریتی کشور افزایش می‌یابد و با شروع پروژه‌ها و فعالیت‌های جدید عملا بخش خصوصی به کمک بخش دولتی آمده و کل کشور از این مشارکت سود خواهد برد. همچنین باید توجه داشت که نیروگاه‌های بادی به سرمایه اولیه بالایی نیاز دارند بنابراین تامین سرمایه اولیه در این طرح‌ها از مشکلات اجرایی آن‌هاست.

 استفاده از سرمایه‌گذاری‌های غیر دولتی در اجرای طرح‌ها کمک شایانی به دولت خواهد کرد، چرا که توسعه انرژی‌های نو و به ویژه انرژی بادی که تجاری‌ترین نوع از انواع آن‌هاست به صراحت در اسناد و قوانین ملی بالادستی و سیاست‌های ابلاغی مقام معظم رهبری تدوین شده است که البته دلایل مهمی باعث این جهت گیری کلان در کشور شده است، بنابراین بدون تردیدی یکی از اصلی‌ترین مولفه‌های امنیتی تمام کشورها دسترسی به انرژی مورد نیاز است. البته به وجود آمدن هر اشکالی در سیستم عرضه انرژی، اختلال و آسیب‌های پر دامنه‌ای را در تمام بخش‌های اقتصادی و اجتماعی بر جای خواهد گذاشت. به همین دلیل کشورها تنوع بخشی به منابع انرژی را جزء اصلی‌ترین راهبردهای خود قرار می‌دهند تا از وابستگی به یک یا دو نوع انرژی به شدت احتراز کرده و آسیب پذیری خود را به حداقل ممکن کاهش دهند. بر این اساس باید از کلیه منابع انرژی در دسترس و قابل حصول، از جمله انرژی‌های تجدیدپذیر، انرژی مصرفی مورد نیاز کشور خود را تامین کنیم و با ایجاد تنوع در منابع انرژی، پایداری بیشتری به سیستم انرژی کشور ببخشیم اگرچه ایران در زمره کشورهایی که متعهد به کاهش انتشار گازهای آلاینده و گلخانه‌ای هستند، محسوب نمی‌شود ولی از هم اکنون براساس سیاست‌های مصوب، خود را متعهد به حفاظت از کره زمین، اتمسفر ومحیط زیست می داند و تولید انرژی از منابع تجدیدپذیر از جمله انرژی بادی را مورد تاکید قرار می‌دهد. به طور کلی با جایگزینی هر یک درصد از انرژی برق بادی با انرژی برق تولیدی از نیروگاه‌های سوخت فسیلی می‌توان حدود سه درصد از انتشار گازهای گلخانه‌ای کاست.

 مساله دیگر اینکه، اشتغالزایی و تحول اجتماعی در مناطق محروم از مباحث مورد توجه برای توسعه انرژی‌های نو در کشور است. از آنجا که غالبا نقاط بادخیز ایران در مناطقی واقعند که از نظر توسعه اجتماعی محروم به شمار می‌روند بنابراین توسعه نیروگاه‌های بادی مستقیما در شرایط اجتماعی این مناطق تحول ایجاد خواهد کرد. آمارها نشان می‌دهد تنها در سال ۲۰۱۰ میلادی ۶۳۰ هزار شغل در حوزه باد به ازای ۳۹ گیگاوات ظرفیت نصب شده جدید بادی، در کشورهای پیشرو و در حال توسعه ایجاد شده است. نکته مهم دیگر اینکه، باتوجه به مشکلات بهره برداری و حفظ پایداری شبکه‌های گسترده، به وسیله تولید پراکنده برق از میزان اتکا به شبکه‌های طولانی کاسته شده و این یکی از راهکارهای صورت گرفته در صنعت برق است. این کار نه تنها به لحاظ اقتصادی هزینه ‌بر نیست بلکه به واسطه تقلیل تلفات شبکه انتقال و توزیع و همچنین کاهش نیاز به ظرفیت ذخیره شده تولید وافزایش پایداری در شبکه، هزینه تمام شده برق به صورت قابل ملاحظه‌ای کاهش خواهد داد. بهترین نوع تولید پراکنده، نیروگاه‌های بادی، آبی کوچک، زیست توده، زمین گرمایی و خورشیدی است که نه تنها به لحاظ مکان تولید برق بلکه به لحاظ منابع اولیه هم پراکنده‌اند و نیازمند استفاده از شبکه گاز و یا شبکه‌های انتقال نفت نیستند. این فعالیت به عنوان یکی از مهمترین تدابیر پدافند غیر عامل محسوب می‌شود. تحقق هدف مذکور بدین معناست که کشور از امکاناتی برخوردار خواهد شد که در صورت بروز حوادث و سوانح مختلف می‌تواند ضروری‌ترین نیازهای برق بخش‌های مختلف را صرفا با اتکا به منابع و امکانات محلی تامین کند.

 بازار نیروگاه‌های بادی در ایران رو به شکوفایی است و ورود به این بازار می‌تواند آینده خوبی را در دراز مدت برای سرمایه گذاران تضمین کند. بنابراین اگر به ایران به صورت پایگاهی برای تولید تجهیزات و تامین نیروی انسانی متخصص نگریسته شود بازارهای کشورهای منطقه می‌توانند مورد توجه قرار گیرند.

انواع توربینهای بادی 

 اگرچه طراحی های مختلفی برای توربین بادی موجود می باشد ولی به طور عمده به دو دسته کلی بر اساس جهت محور چرخش تقسیم بندی می شوند:

 محور افقی:  (Horizontal Axis Wind Turbines(HAWTS که نوع رایج آن می باشد.

 محور عمودی: (Vertical Axis Wind Turbines(VAWTS

جریان هوا بر روی هر سطحی دو نوع نیروی ایرودینامیکی با نام های درگ و لیفت به وجود می آورد که نیروی درگ در جهت جریان باد است و نیروی لیفت عمود بر جریان باد می باشد. یکی از این نیروها یا هر دو می توانند نیروی مورد نیاز برای چرخش پره های توربینهای بادی را تامین نمایند.

توربینهای محور افقی  

ویژگی روتورهای توربینهای محور افقی جدید بسیار شبیه ملخ هواپیما می باشد. جریان هوا روی مقطع ایرودینامیکی شکل پره هاحرکت می کند و نیروی لیفت را به وجود آورده که باعث چرخش روتور می گردد. ناسل توربینهای محور افقی محلی برای گیربکس و ژنراتور می باشد. مساحتی که هر کدام از پره ها جاروب می کنند از این فرمول بدست می آید:

که در آن D قطر روتور می باشد. این مساحت جاروب شده باید مستقیما روبروی وزش باد باشد تا ماکزیمم برق تولیدی را داشته باشیم. پس توربینهای محور افقی باید سیستمی برای تنظیم در مقابل باد قرار گرفتن داشته باشند که به آن مکانیزم yawing می گویند. به طوری که کل ناسل می تواند به سمت باد بچرخد.  در توربینهای کوچک دنباله بادنما این کنترل را بر عهده دارد. ولی در سیستمهای متصل به شبکه سیستم کنترل یاو فعال می باشد که به وسیله سنسورهای تعیین کننده جهت باد و موتورها، ناسل به سمت باد می چرخد.

توربینهای محور عمودی

 این توربینها به دو نوع اصلی تقسیم بندی می شوند: Savnoius و Darrieus.

 Savnoius مانند یک چرخ آب با نیروی درگ کار می کند در حالی که Darrieus از تیغه هایی مشابه توربینهای محور افقی استفاده می کند. توربینهای محور عمودی بسیار نزدیک به زمین قرار می گیرند که از مزیتهای آن قرار دادن تجهیزات سنگین آن از جمله گیربکس و ژنراتور نزدیک به سطح زمین می باشد، هرچند که شدت باد در سطح زمین کمتر است و در نتیجه برق کمتری تولید خواهد نمود. از دیگر مزایای این نوع توربینها می توان به نیاز نداشتن سیستم یاو اشاره کرد چراکه این نوع توربینها، باد را از هر جهت مهار می کنند و این مزیت برتری بسیاری نسبت به کمبودهای آن دارد. از کمبودهای آن می توان به این مورد اشاره نمود که این نوع توربینها به طور خودکار مانند توربینهای محور افقی شروع به کار نمی کنند.

توربین کلاسیک Darrieus از نوع تخم مرغی شکل

توربین ۵ پره ای از نوع H-type از انواع توربینهای Darrieus

انواع روتورهای Darrieus

توربین از نوع Savnoius

 این نوع توربین در سال ۱۹۲۲ میلادی توسط مهندسی فنلاندی اختراع گردید و در سال ۱۹۲۹ این اختراع به ثبت رسید. این توربین از حداقل ۲ نیم استوانه تشکیل شده است.

چرخش توربینهای بادی برپایه نیروی درگ

توربینهای بادی برپایه نیروی درگ مانند یک بادبان باز عمل می کنند و نیروی باد سطح مورد نظر را جلو می برد. اولین توربینهای بادی که در ایران باستان مورد استفاده قرار می گرفت با این رویکرد کار می کردند. روتور Savonius یک نمونه بسیار ساده از آسیابهای بادی بر پایه نیروی درگ می باشد. این توربینها به چرخش در می آیند چراکه نیروی درگ در ناحیه باز و مقعر این روتورها بسیار بزرگتر و بیشتر از قسمت بسته و محدب آنها می باشد.

چرخش توربینهای بادی بر پایه نیروی لیفت

با استفاده از نیروی لیفت انرژی بیشتری نسبت به نیروی درگ بدست می آید. ولی تنها نیاز آن سطحی ایرودینامیکی شکل می باشد شبیه چیزی که در بالهای هواپیما استفاده می شود. این مقطع ایرودینامیکی برای ایجاد اختلاف فشار بین سطح بالا و پایین و ایجاد یک نیروی خالص عمود بر جهت باد می باشد.

اجزاء اصلی توربینهای بادی محور افقی

  • روتور: روتور توربین باد شامل پره، هاب، دماغه و یاتاقانهای پره می باشد. روتور یک  توربین بادی محور افقی بطور خلاصه متشکل از تعدادی پره می باشد که بطور شعاعی در اطراف یک شفت که موازی باد قرار می گیرد نصب شده اند و بدین ترتیب روتوری را تشکیل می دهند که عمود بر جهت باد دوران می کند.معمولا روتور توسط بک برج در ارتفاع مناسبی نسبت به زمین قرار می گیرد و البته پیش بینی های لازم برای هم جهت شدن امتداد شفت با جهات مختلف باد و همچنین برای کنترل سرعت آن صورت می گیرد و قدرت جذب شده توسط این روتور مستقیما و یا توسط یک سیستم مکانیکی به ماشینی که قرار است رانده شود منتقل می گردد. تعداد پره ها معمولا متغیر بوده و پهنای پره (کورد) ممکن است در تمام طول پره ها ثابت و یا آنکه متغیر باشد و پره از هاب به سمت نوک باریک شود.ضمنا پره ممکن است در امتداد محور طولی تاب داشته باشد یا اصطلاحا پیچیده باشد و بالاخره گام پره ممکن است ثابت و یا متغیر باشد.
  • پره: یکی از مهمترین بخشهای توربین بادی بوده و وظیفه آن تولید نیروی لازم برای  چرخاندن شفت اصلی توربین باد است. پره به گونه ای ساخته می شود که استحکام و استقامت بسیار بالا در برابر نیروهای دینامیکی و آیرودینامیکی داشته باشد.
  • برج: سازه های مشبک فولادی- برجهای استوانه ای فولادی یا بتنی و همچنین ستونهای  مهار شده توسط کابل از رایج ترین برجهای نگهدارنده محسوب می شوند. ارتفاع برج معمولا بین یک تا یک ونیم برابر قطر روتور در نظر گرفته می شود. انتخاب نوع برج وابستگی به شرایط سایت دارد. همچنین سفتی برج فاکتور مهمی در دینامیک سازه توربین باد محسوب می گردد چرا که احتمال کوپل شدن ارتعاشات بین برج و روتور که منجر به خطر رزونانس می گردد وجود دارد.
  • ناسل: شامل پوشش خارجی مجموعه توربین، شاسی و سیستم دوران حول محور برج می باشد که روتور به آن متصل است. ناسل در بالای برج قرار دارد.بعضی از ناسل ها آنقدر بزرگند که تکنسین ها می توانند داخل آن باستند.
  • سیستم انتقال قدرت: سیستم انتقال قدرت شامل اجزاء گردنده توربین باد است. این  اجزاء عمدتاً شامل محور کم سرعت (سمت روتور)، گیربکس و محور سرعت بالا ( در سمت ژنراتور) می باشد. سایر اجزاء این سیستم شامل یاتاقانها، یک یا چند کوپلینگ، ترمز مکانیکی و اجزاء دوار ژنراتور می باشد. در این مجموعه وظیفه گیربکس افزایش سرعت نامی روتور از یک مقدار کم (در حد چند ده دور در دقیقه) به یک مقدار بالا (در حد چند صد یا چند هزار دور در دقیقه) که مناسب برای تحریک یک ژنراتور استاندارد است، می‌باشد. عمدتاً دو نوع گیربکس در توربین‌های بادی مورد استفاده قرارمی‌گیرد: گیربکس‌های با شفت‌های موازی و گیربکس‌های سیاره‌ای. برای توربین‌های سایز متوسط به بالا (بزرگتر از KW 500) مزیت وزن و سایز در گیربکس‌های سیاره‌ای نسبت به نوع دیگر یعنی گیربکس‌های با شفت موازی کاملاً بارزتراست. بعضی از توربین‌های باد از یک طرح خاص برای ژنراتور استفاده می کند (ژنراتور با تعداد قطب بالا ) که در آن نیازی به استفاده از گیربکس نمی‌باشد.
  • ژنراتور:  پره های توربین بادی انرژی جنبشی باد را به انرژی دورانی درسیستم انتقال  تبدیل می کنند و در قدم بعدی ژنراتور، انرژی توربین را به شبکه برق منتقل می نماید. بطور معمول از سه نوع ژنراتور در توربینهای بادی استفاده می شود. – ژنراتور جریان مستقیم – آلترناتور یا ژنراتور سنکرون – ژنراتور القایی یا آسنکرون
  • گیربکس(جعبه دنده) : از آنجائی که محور توربین دارای دور کم و گشتاور بالا و بر عکس  آن محور ژنراتور دارای دور بالا و گشتاور کم است، سیستم انتقال قدرت باید به نحوی این دو محور را به یکدیگر متصل نماید.
  • ترمز در توربینهای بادی با ظرفیت بسیار پایین ( ۱ الی ۵ کیلووات) معمولا از سیستم  های ترمز کفشکی استفاده می شود، زیرا جهت متوقف نمودن پره ها، نیروی زیادی مورد نیاز نیست. در توربینهای بادی با ظرفیت بالا، از ترمزهای دیسکی استفاده می شود.
  • سیستم کنترل:  برای بدست آوردن حداکثر راندمان از یک توربین بادی، باید بتوان  همواره صفحه دوران توربین را عمود بر جهت وزش باد قرار داد. برای این منظور از سیستم هایی برای تغیر جهت توربین بادی و قرار دادن سیستم در مسیر باد استفاده می شود. این سیستم (yaw system) یک سیستم ترکیبی الکتریکی- مکانیکی است که هدایت آن توسط واحد کنترل انجام میشود. در توربین های بادی سایز کوچک به جای چرخ انحراف (yaw system) از بالچه استفاده می کنند. همچنین سیستم هایی جهت کنترل و تنظیم سرعت دورانی در توربین بادی مورد استفاده قرار می گیرند. چنین سیستمهایی علاوه بر کنترل دور روتور، مقدار قدرت تولیدی و نیروهای وارده بر روتور در بادهای شدید را نیز محدود می کنند.
  • سیستم هیدرولیک:  سیستم های هیدرولیک به مجموعه جک و یونیت هیدرولیکی و  اتصالات جانبی آنها اطلاق می شود. جک هیدرولیکی از یک سیلندر و پیستون دو طرفه تشکیل شده است و با انتقال سیال به هر ناحیه از آن، جک به سمت مخالف حرکت می کند. یونیت هیدرولیکی از الکتروموتور، پمپ، مخزن تامین فشار اولیه، شیرهای هیدرولیکی، شیلنگهای انتقال سیال به دو ناحیه داخل سیلندر جک، مخزن روغن، روغن مخصوص و تجهیزات جنبی تشکیل شده است. پس از دریافت فرمان، پمپ مقداری روغن را از داخل مخزن به محفظه جلو یا عقب سیلندر جک پمپ می کند تا جک بتواند به مقدار مورد نیاز محور تراورس را در جهت مورد نیاز حرکت دهد. محور تراورس محوری است که از سوراخ داخل شفت اصلی عبور می کند و یک سمت آن با جک هیدرولیکی و طرف دیگر آن با مکانیزم مثلثی واقع درون هاب مرتبط است. وظیفه این محور انتقال حرکت جک هیدرولیکی و در واقع فرمان کنترلر به مکانیزم مثلثی است که باعث چرخش پره ها می گردد. مکانیزم مثلثی درون هاب باعث تبدیل حرکت انتقالی محور تراورس به حرکت چرخشی و نتیجتا چرخش پره ها به دور محورشان می گردد.

با توجه به افزایش روز افزون تعرفه های برق شهری و افزایش راندمان پنل های خورشیدی و توربین های بادی بهمراه کاهش قیمت آنها و همچنین افتابی بودن و باد خیز بودن اکثر مناطق ایران نسبت به سایر کشور هاو نیز سیاست بلند مدت حمایت وزارت نیرو برای استفاده مردم از انرژی های تجدید پذیر( خورشیدی و بادی) جهت تولید برق منازل مسکونی که بانصب کنتور های جدید  محاسبه گر دو طرفه برای مشترکین در حال تحقق است انتخاب یک پکیج برق خورشیدی ۱ الی ۲ کیلو واتی ویا یک توربین بادی مشابه ویا بصورت ترکیبی برای توان های بالاتر که علاوه بر کاهش هزینه برق مصرفی ماهانه در هنگام قطع برق نیز بعنوان برق اضطراری استفاده میشود کاملا منطقی و مقرون به صرفه میباشد.

این شرکت با سابقه چند ساله در نصب و راه انداری پنل های خورشیدی  و توربین های بادی با ارایه محصولاتی ازکارخانه NEW HOPE ساخت کشور چین که از کیفیت و قیمت مناسبی نیزبرخوردار است آمادگی خدمت به کلیه هم وطنان عزیز در سراسر کشور را دارا میباشد.

صاعقه گیر

صاعقه گیرهای الکترونیکی

۲۳۳

 

 

صاعقه گیر چگونه عمل می کند؟ و انواع آن کدامند؟

 میله های ساده فرانکلینی : اولین واحد جذب که توسط فرانکلین بیشنهاد گردید، میله های ساده  بودند که ضربه مستقیم صاعقه به اندازه طول میله ها، دور از ساختمان اتفاق می افتاد و شعاع حفاظتی این صاعقه گیرهای ساده در کلاسهای حفاظتی براساس تئوری زاویه محاسبه می گردید.
قفس فارادی : با گسترش ابعاد ساختمانها و با توجه به محدودیت های میله ساده ، قفس فارادی (Faraday Cagee) جایگزین میله های ساده فرانکلینی شد، امروزه نیز اکثر استانداردهای جهانی استفاده از قفس فارادی را بهترین روش میدانند. در این روش سعی می شود ساختمان را در قفسی از هادیهای مسی یا فولادی محصور نمود.
صاعقه گیرهای یونیزه کننده هوا : طراحی و نصب این صاعقه گیر های براساس استاندارد  NFC 17-1022 انجام می گیرد ریشه این استاندارد نیز همان تئوری گوی غلطان است که در تمامی استاندارد ها از آن استفاده شده است. NFC 17-102 با وارد کردن پارامتر ΔL‌ در فرمول محاسبات، شعاع پوشش افزایش یافته صاعقه گیر را محاسبه می کند.
صاعقه گیر پس از نصب روی ساختمان، می بایست بوسیله هادیهای میانی Down Conductor از طریق سیم مسی بدون روکش به سیستم زمین متصل گردد.
مقاومت الکترود زمین صاعقه گیر می بایست زیر ۱۰ اهم باشد و پس از اجرا به شبکه هم بتانسیل کل سایت متصل شود.
در اجرای الکترود زمین هر صاعقه گیر می بایست از اقلامی چون صفحه های مسی، مواد کاهنده مقاومت (LOM) ، اتصالات جوش انفجاری استفاده نمود.

صاعقه گیر الکترونیکی :

درست قبل از حدوث صاعقه بطور طبیعی محتوی الکتریکی اتمسفر بطور ناگهانی افزایش می یابد. این تغییر وضعیت توسط واحد جرقه زن حس و کنترل می شود صاعقه گیرهای الکترونیکی انرژی موجود در هوای متلاطم پیش از طوفان را (که حدود چندین هزار ولت بر هر متر است) جذب و در واحدهای جرقه زن ذخیره می نماید و در نهایت واحد جرقه زن با تخلیه بار الکتریکی خازنها بین الکترودهای فوقانی و الکترود مرکزی اش هوای اطراف را یونیزه می نماید

اصول عملکرد صاعقه گیر الکترونیکی :

آزاد سازی کنترل شده یونها  : واحد جرقه زن (TRIGGERING) صاعقه گیرهای الکترونیکی شرایطی  را ایجاد می کند تا چشمه جوشانی از یون (کرونا) در اطراف میله نوک تیز فراهم شود. دقت عمل این واحد باید به گونه ای کنترل شده باش که آزاد سازی یونها را درست چند میکرو ثانیه قبل از حدوث و تخلیه صاعقه صورت دهد.
اثر کرونا و واحد جرقه زن : حضور حجم وسیع بارهای الکتریکی در اطراف میله نوک تیز صاعقه گیر پس از یونیزاسیون توسط واحد جرقه زن سبب می شود تا پدیده طبیعی تجمع بارهای الکترونیکی اطراف میله (Corona effect) تقویت و تشدید شود.
تسریع در بروز علمدار حمله زمینی : صاعقه گیرهای  الکترونیکی  طوری طراحی شده اند که ارسال علمدار حمله زمینی را خیلی زودتر از نقاط هم ارتفاع مشابه همان محدوده به انجام برسانند و این به معنی تشکیل نقطه ترجیهی دریافت صاعقه در منطقه تحت حفاظت با صاعقه گیرهای  الکترونیکی نسبت به سایر نقاط می باشد.

 

 

سیستم هم پتانسیل :

 وجود اختلاف پتانسیل بالا بین دو هادی الکتریکی نزدیک به هم باعث بوجود آمدن قوس الکتریکی می شود که خطر و خسارت ناشی از آن کمتر از صاعقه نیست ، به همین دلیل در ایجاد یک سیستم حفاظتی هم پتانسیل سازی از ارکان کار بوده و بدین مفهوم است که در یک مکان حفاظت شده بایستی تمامی هادی های الکتریکی از قبیل بدنه دستگاه ها، سازه های فلزی، لوله های آب و … هم پتانسیل باشند زیرا در غیر این صورت این اختلاف پتانسیل باعث تخلیه شدن رعد و برق از مسیرهای نامناسب خواهد شد که احتمالاً خسارت آن کمتر از اصابت مستقیم صاعقه نیست . برای ایجاد سیستم هم پتانسیل بایستی تمامی اجزاء هادی در ساختمان به گونه ای به سیستم زمین مشترک متصل گردند . برای طراحی سیستم حفاظت از سایت های ارتباطی در مقابل رعد وبرق مؤلفه های فراوانی وجود دارد که مواردی در ذیل آمده است :

۱-      موقعیت جغرافیای سایت ارتباطی ( که به وسیله آن احتمال وقوع رع و برق در آن ناحیه و  ضرورت نصب سیستم ارتینگ محاسبه می گردد ) .

۲-      فاکتور تأثیر سطوح خارجی ساختمان : شکل و ارتفاع یک ساختمان با کاهش یا افزایش احتمال  اصابت صاعقه به آن ساختمان مستقیماً در ارتباط است .

۳-      نوع ساختمان : آجری یا بتونی بودن ساختمان و این که دارای اسکلت فلزی است یا نه ؟

۴-      ارزش تجهیزات ارتباطی داخل ساختمان : بسته به قیمت تجهیزات می توان مقدار هزینه  مطلوب برای ایمنی آن را برآورد نمود .

در حالت کلی برای حفاظت از یک سایت ارتباطی در نظر گرفتن دو نوع حفاظت خارجی و حفاظت داخلی الزامی می باشد .

حفاظت خارجی : حفاظت خارجی سایت ارتباطی را در مقابل اصابت مستقیم رعد و برق محافظت می نماید و از سه قسمت ذیل تشکیل گردیده است .

۱-      برقگیر

۲-      هادی میانی

۳-      سیستم زمین

که هر کدام از موارد فوق دارای انواع محاسبات عدیده ای می باشد که به اختصار شرح داده می شود .

برقگیر :

برقگیر وسیله ای است که در بالاترین نقطه ساختمان نصب گشته و اولین نقطه اصابت رعد و برق می باشد به دلیل این که رعد و برق از کوتاه ترین فاصله بین ابر و زمین تخلیه می گردد . البته از نوک برقگیر نصب شده به زاویه ۴۵ درجه تا سطح افق را مخروط ایمنی می گویند و هر جسمی که در درون مخروط ایمنی قرار گیرد دیگر در معرض اصابت مستقیم صاعقه نخواهد نخواهد بود و به همین دلیل است که دربعضی موارد برای پوشش کل ساختمان سایت از چندین برقگیر به صورت قفس فاراده استفاده می گردد و حتی در استاندارد NFC 17-100 فرانسه برای حفاظت از کارخانجات پتروشیمی و نفت و … پیشنهاد گردیده که در اطراف ساختمان چهار دکل نصب و هر کدام از آن ها به وسیله سیم از سر به هم وصل شوند تا بدین صورت مخروط ایمنی با ضریب اطمینان بالا حاصل گردد. در حالت کلی می توان نصب برقگیرها را با توپولوژی ساده یا مش (Mesh ) نمود .

برقگیر بر دو نوع است :

۱-      برقگیر غیرفعال ( پسیو )

۲-      برقگیر فعال ( اکتیو )

برقگیر غیرفعال شامل یک میله ساده نوک تیز است که دقیقاً مخروط ایمنی از نوک آن به فاصله ۴۵ درجه می باشد و در محاسبات عملی برای بالا رفتن اطمینان این زاویه را ۳۵ یا حتی پایین تر در نظر می گیرند . برقگیر فعال با فناوری مختلف ( خازنی ، اتمی و … ) هوای اطراف خویش را یونیزه می نماید و بدینوسیله ایمنی بیشتری را ایجاد می نماید . این نوع برقگیرها با توجه به توان ایمنی ایجادی به کلاس های ۱ ، ۲ و ۳ تقسیم می گردند.

در برقگیرهای فعال معمولاً سه مؤلفه کلاس حفاظتی ، شعاع حفاظت و ارتفاع برقگیر نسبت به سطح بایستی مورد توجه قرار گیرد. از نظر قیمت نیز برقگیرهای فعال گران تر هستند و می بایست در انتخاب برقگیر دقت نماییم تا مجهز به سیستم هادی میانی مناسب باشد تا برقگیر درست عمل کرده و موجب خسارت نشود.

 

هادی میانی :

ارتباط بین برقگیر و سیستم زمین توسط هادی میانی انجام می گیرد. با توجه به استاندارد NFC اگر ارتفاع ساختمان از ۲۸ متر بالاتر باشد یا این که طول ساختمان از ۲ برابر ارتفاع بزرگ تر باشد بایستی برای اتصال برقگیر به سیستم زمین از هادی میانی استفاده نمود. در مورد قطر هادی نیز استاندارد مصارف خانگی برای هادی میانی سیم ۵۰ مسی و برای مصارف صنعتی سیم های ۷۵ ، ۹۰ ، ۱۲۰ و … بسته به مؤلفه محتویات ساختمان می توان استفاده نمود.

یک نکته ضروری در مورد هادی میانی تخلیه جانبی است اگر هنگام نصب اتصالات هادی میانی به اندازه کافی دقت نگردد، امکان ایجاد اتصال کوتاه و تخلیه انرژی از مسیرهای نامناسب وجود دارد که خطر این مسئله می تواند بیشتر از خطر اصابت صاعقه باشد.

برای نصب هادی میانی از بست های مخصوصی استفاده می گردد که معمولاً از جنس مس یا استیل هستند و همچنین منطبق بر استاندارد اروپا فاصله هادی میانی از دیوار بایستی کمتر از یک دهم متر باشد.

سیستم زمین :

یکی از مهم ترین قسمت های سیستم ارتینگ سیستم زمین می باشد آن می باشد به طوری که بعضی سیستم ارت را در این قسمت خلاصه می کنند.

با اصابت رعد و برق به برقگیر انرژی آن به برقگیر منتقل می گردد و سیستم هادی میانی وظیفه دارد بدون تخلیه از مسیرهای نادرست از یک مسیر مناسب که در طراحی مدنظر بوده آن را به سیستم زمین منتقل گرداند و کار سیستم ارت به تزریق انرژی رعد و برق به زمین منتهی می شود.

با توجه به توضیح بالا معلوم می گردد که قسمت زمین سیستم ارت بایستی به نحوی تخلیه انرژی به زمین را در اسرع وقت انجام نماید و می دانید زمین مبداء توان است و دارای مقاومت صفر ، ولی به علت وجود لایه های پوسته زمین، در سطح زمین مقاومت آن دقیقاً صفر نیست و ما با ایجاد سیستم زمین مقاومت زمین را به صفر نزدیک می نماییم تا قابلیت جذب انرژی رعد و برق را داشته باشد. پس مهمترین مؤلفه یک سیستم زمین مقدار مقاومت آن است که هر چه پایین تر باشد بهتر است. برای سیستم های قدرت، مقاومت ارت زیر ۱۰ اهم قابل قبول می باشد ولی برای سیستم های حساس از قبیل سیستم های مخابراتی معمولاً مقاومت زیر ۳ اهم مدنظر است که در موارد خاص با توجه به پیشنهاد سازنده دستگاه این مقدار تغییر می یابد.

سیستم زمین به انواع مختلفی از قبیل سیستم چاه، سیستم حلقه و سیستم میله ای ارت تقسیم بندی می شود و با توجه به نوع خاکی که می خواهیم سیستم زمین ایجاد نماییم انتخاب می گردد. مثلاً در جاده های سنگلاخی، میله های ارت که به صورت شبکه ای در زمین فرو می روند برای ایجاد و گسترش سیستم زمین بهترین گزینه است.

سیستم حفاظت داخلی :

حفاظت داخلی سایت ارتباطی را در مقابل عوامل مختلفی از قبیل نوسانات ولتاژ(Over Voltage) و القائات ناشی از اصابت غیرمستقیم رعد و برق(که به شعاع یک کیلومتر از محل اصابت این القائات وجود دارند) محافظت می نماید.

ارسترها تجهیزاتی هستند که کار حفاظت از سیستم های مخابرات و الکترونیک، در برابر نوسانات ناشی از رعد و برق را بر عهده دارند البته نقش ضربه گیرهای ولتاژ را نباید از قلم انداخت.

سیستم حفاظت خارجی مخصوصاً در قسمت انتهای آن قدرت آنی تخلیه انرژی زیاد ایجاد شده از اصابت مستقیم را ندارد و گفته می شود در لحظه اول تنها ۵۰ درصد انرژی تخلیه می گردد و با توجه به هم پتانسیل بودن ساختمان امکان برگشت انرژی به داخل سایت و مورد حمله قرار دادن آن موجود می باشد، با نصب ضربه گیرها این امکان از بین خواهد رفت.

ضربه گیرها در کلاس های حفاظتی مختلف یک، دو، سه و به صورت یک پل، دو پل تا چهار پل موجود است که در محاسبه نصب آن ها جریان گذرنده در محل نصب و مکان نصب مهم می باشد به طور مثال اگر می خواهیم ضربه گیر را در ورودی اصلی برق ساختمان قرار دهیم بهتر است از ضربه گیرهای کلاس یک استفاده نمود.

ارسترهای مختلفی برای محافظت از خطوط تلفن، خطوط آنتن، شبکه های رایانه ای و شبکه های رادیویی فرکانس بالا موجود است که می توان بسته به پورت های ورودی و خروجی و تعیین اهمیت حفاظت نسبت به تهیه آن ها در رنج ها و کلاس های مختلف اقدام نمود. البته بحث در مورد ساختار داخلی ارسترها بسیار مفصل است که در قالب این مقاله نمی گنجد.

 

 

صاعقه گیرهای الکترونیکی دارای پوشش وسیعی نسبت به صاعقه گیر های معمولی هستند لذا در ساختمانها و سایتهایی با شعاع بیش از ۲۰ متر از مرکز بنای احداثی  استفاده از آنها اقتصادی تر است

سینی کابل و نردبان کابل

سینی کابل و نردبان کابل

download

سینی کابل و نردبان کابل چیست؟

سینی کابل چیست؟

سینی کابل در تاسیسات الکتریکی کاربرد دارد و برای مرتب سازی کابل کشی ها، زیبایی و محافظت از کابل های عبوری در  ساختمان ها کاربرد دارد.

سینی های کابل انواع مختلفی دارد که جدیدترین نوع آن سینی های کابل پی وی سی است.

سینی کابل پی وی سی یا سینی کابل گالوانیزه گرم به دلیل ویژگی های خاص بیشتر در سیستم های تاسیسات برق استفاده می شود. و زد زنگ بوده و مناسب برای محیط های مرطوب و اسیدی می باشد.

سینی کابل

 

نوع دیگر سینی کابل، سینی کابل گالوانیزه فابریک می باشد.

این نوع سینی کابل بیشتر در سوله ها، پارکینگ ها و مکان های مسقف استفاده می شود.

سینی کابل آبکاری گرم یک نوع سینی کابل است که بیشتر در محیط های روباز استفاده می شود.

ضخامت سینی های کابل بستگی به حجم کابل، عرض سینی کابل و مکان نصب  دارد.

 

نردبان کابل چیست؟

نردبان کابل برای عبور دادن تعداد زیادی کابل از یک مسیر مشخص استفاده می شود.

در مسیرهای عمودی عبور سیم ها، از نردبان کابل به جای سینی کابل استفاده می شود زیرا راحت تر می توان کابل ها را به بدنه نردبان کابل محکم نمود.

در مسیرهای افقی نیز از نردبان کابل هم استفاده می شود.

محصولات نردبان کابل در شرکت فنی مهندسی سپید صنعت نگین آسیا شامل نردبان کابل چهار خم و نردبان کابل شش خم می باشد.

تولید نردبان کابل شامل مراحل زیر می باشد:

برش ورق نردبان کابل

پانچ کردن ورق نردبان کابل جهت اتصال یا بستن کابل

خمکاری نردبان کابل به صورت چهارخم یا شش خم

جوشکاری قطعات نردبان کابل در صورت نیاز

بازرسی قطعات نردبان کابل که شامل بازرسی اولیه، بازرسی در حین تولید، بازرسی پس از عملیات گالوانیزاسیون و بازرسی نهایی می باشد.

نردبان کابل

قیمت نردبان کابل و سینی کابل معمولا یکی از پارامترهای مهم برای مشتریان می باشد.

شما مشتریان گرامی می توانید برای اطلاع از قیمت سینی کابل و قیمت نردبان کابل به سایت سپید صنعت نگین آسیا مراجعه  کنید و از محصولات سینی کابل و نردبان کابل با قیمت مناسب این  شرکت بهره مند شوید.

برق سه فاز و تجهیزات آن

برق سه فاز و تجهیزات آن


همانطور که می دانیم در اتصال ستاره اختلاف سطح هر فاز با سیم نول ولتاژ فازی (UP) و اختلاف سطح هر فاز با فازی دیگر ولتاژ (Ul) را تشکیل می دهند. مقدار ولتاژ خط از مجموع دو ولتاژ فازی بدست می آید. به همین جهت برای بدست آوردن مقدار Ul باید برآیند دو ولتاژ فازی را رسم و مقدار آن را محاسبه نماییم. بدین ترتیب که یکی از بردارها را در امتداد و به اندازه خودش رسم کرده و سپس بردار را با بردار پهلویش رسم می کنیم. رابطه روبرو برقرار است :
اما جریانی که از هر کلاف عبور می کند همان جریان خط می باشد. یعنی در اتصال ستاره جریان خط مساوی جریان فاز است . IL=IP
-محاسبه جریان و ولتاژ در اتصال مثلث
در این روش کلافهای مصرف کننده یا مولد به شکل مثلث قرار می گیرند. همانطور که می دانیم ولتاژ خط UL در اتصال مثلث همان ولتاژی است که در دو سر کلاف قرار دارد یعنی در اتصال مثلث ولتاژ خط برابر با ولتاژ فاز است : UL = UP
اما جریانی که از هر خط می گذرد مجموع برداری جریان دو کلاف بعدی است. پس جریان هر خط ۷۳/۱ برابر جریان هر فاز است :
-اتصال مختلط ترکیبی از اتصالهای ستاره و مثلث می باشد.
توان در مدارهای سه فاز
در یک اتصال سه فاز توان کل از مجموع توانهای هر فاز بدست می آید : P = P1+P2+P3
اگر بار متعادل باشد داریم : P1 = P2 = P3 = Pph
پس توان کل می تواند سه برابر توان هر فاز باشد : P = 3Pph
P = Up.lp.COS (j)
در اتصال ستاره توان بصورت زیر بدست می آید :
و ip=iL
در اتصال مثلث هم رابطه بالا صادق می باشد.
روشهای اندازه گیری توان
معمولاً برای اندازه گیری در سیستم سه فاز از دو روش زیر استفاده می کنند :
الف- روش چهار سیم (۳ واتمتری)
ب- روش سه سیم (۲ واتمتری)
الف- روش چهار سیم :
در این روش با استفاده از ۳ واتمتر که سر راه هر فاز قرار می گیرد و سیم نول توان هر فاز جداگانه اندازه گیری شده و مجموع این سه واتمتر توان کل می باشد. اگر بار کاملاً متعادل باشد هر سه واتمتر دارای مقادیر مساوی می شوند. پس در یک بار متعادل فقط از یک واتمتر هم می توان استفاده کرد.
ب- روش سه سیم :
در این روش بدون سیم نول عمل می شود. دو واتمتر که هر کدام بین دو فاز قرار می گیرد البته فاز وسط برای فازهای اول و سوم مشترک است توان کل از مجموع دو واتمتر بدست می آید.
مزایای سیستم سه فاز
۱- در جریان تکفاز مقدار قدرت لحظه ای در قسمتهایی به صفر می رسد اما در جریان سه فاز هیچگاه توان لحظه ای صفر نمی شود چون اگر یکی از فازها مقدارش به صفر برسد فازهای دیگر دارای مقادیر هستند.
۲- راه اندازی موتورهای آسنکرون : می دانیم که برای گردش موتورهای آسنکرون احتیاج به میدان دوار است که این میدان با جریان تکفاز ساخته نمی شود.
۳- تبدیل جریان متناوب به جریان مستقیم : دامنه یکسو در تبدیل سیستم سه فاز به جریان مستقیم دارای ضربان کمتری نسبت به جریان یکسو شده توسط جریان متناوب تکفاز بوده و ضریب بهره آن زیاد است.
عایق کابلها
برای پوشش عایقی سیم ها از پلاستیک / لاستیک و یا از کاغذ استفاده می شود. امروز کابل با عایق پلی وینل pvc بیشتر از کابلهای دیگر بکار می رود. عایق دیگری بنام پلی اتیلن نیز وجود دارد. عایق اکثر کابلهای جریان قوی از کاغذ آغشته به روغن تهیه می شود.
از عایق لاستیکی در جاهایی که احتیاج به چرخش زیاد باشد نیز استفاده می کنند.
ساختمان کابلهای فشار قوی و حفاظت آنها :
قسمت اصلی ساختمان کابلها هادی و عایق آن است. ضمناً کابل را باید در مقابل پدیده های زیر حفاظت نمود :
الف- حفاظت در مقابل فشار و ضربه های مکانیکی
ب- حفاظت در مقابل زنگ زدگی و اکسید شدن هادی
پ- حفاظت در مقابل اثرات شیمیایی و پوسیدگی
ت- حفاظت در مقابل اثرات میدان الکتریکی و اتصال کوتاه شدن و میدان های خارجی و جریان زیاد
علایم اختصاری کابلها
علایم اختصاری کابلهای لاستیکی و پلاستیکی به شرح زیر است :
بعد از حروف اختصاری تعداد سیم های داخل کابل و مقطع آنها با عدد مشخص و نوع مقطع با حروف زیر تعیین می شود :
r : مقطع گرد s : مقطع مثلثی e : هادی یک رشته ای m : هادی چند رشته ای
معمولاً ولتاژ نامی فازی را با Vo و ولتاژ خطی را با حرف V بعد از علامات اختصاری ذکر می کنند.
مثال : مشخصات کابل زیر را بخوانید. NYY 3*50+ 25 sm
(۰/۶ / ۱kv)
کابل سه فاز با هادی مسی به مقطع ۵۰ میلی متر مربع و سیم نول به مقطع ۲۵ میلی متر مربع با مقطع مثلثی چند رشته ای با عایق و غلاف پروتودور (pvc) برای ولتاژ ۶/۰ کیلو وات فازی و ۱ کیلو ولت خطی بدون محافظ. چون این کابل دارای نوار محافظ نیست در جایی مصرف می شود که هیچگونه فشار مکانیکی به آن وارد نشود.
فیوز
از فیوز برای محافظت سیم و کابل ودستگاههای اندازه گیری؛ ترانسفورماتور؛ ماشینهای الکتریکی و دیگر مصرف کننده ها در مقابل جریانهای اضافی و اتصال کوتاه استفاده می شود. البته فیوز در جایی بکار می رود که ارزش نصب یک رله و یا یک کلید جریان را نداشته باشد.
فیوزها براساس مقدار ولتاژ و نوع ساختمان قطع کننده شان به انواع زیر تقسیم می شوند :
الف- فیوز حرارتی ذوب شونده
ب- فیوز حرارتی (بی متال)
پ- فیوز مغناطیسی
ت- فیوز توان بالا NH
ث- فیوز فشار قوی HH
الف- فیوزهای حرارتی ذوب شونده :
در فیوز ذوب شونده یک سیم حرارتی وجود دارد که سر راه جریان بسته می شود و در اثر عبور جریان زیاد گرم شده و در درجه حرارت معینی ذوب می شود و مدار را قطع می کنند جرقه ای که در زمان قطع ایجاد می شود باعث سوختن وسیاه شدن کنتاکت و عایق های اطراف می شود که بایستی برطرف گردد.
برای برطرف نمودن اثر جرقه سیستم حرارتی را در داخل یک فشنگ چینی یا سفالی عبور می دهند و اطراف سیم را با ذرات کوارتز پر می کنند جرقه ایجاد شده در اثر قطع توسط براده کواتز خنک شده و از بین می رود.
برای تشخیص فیوز ساخته از پولک نشانه استفاده می کنند. این پولک توسط سیم نازکی محکم شده است.
این سیم نازل در هنگام ذوب شدن سیم داخل فیوز پاره شده و پولک توسط نیروی فنر کوچک که در زیر آن قرار گرفته قدری به خارج پرتاب می شود و نشان می دهد که فیوز سوخته است. ضمناً رنگ پولک فیوز نشان دهنده جریان اسمی فیوز است. (جدول۱-۱)
ب-فیوز حرارتی بی متال
فیوز حرارتی بی متال برای حفاظت در مقابل بار اضافی مدار را قطع می کند. بی متال در مقابل حرارت ناشی از بار اضافی لحظه ای تغییر شکل داده و باعث قطع مدار می شود.
پ-فیوز مغناطیسی
فیوزهای مغناطیسی نیز تابع شدت جریان هستند. در اثر بروز اضافه بار میدان مغناطیسی سیم پیچی فیوز قوی شده و براساس خاصیت جذب یک هسته آهنی مدار را قطع می کند. در این فیوزها زمان قطع خط را می توان بوسیله فنر تنظیم کرد. در بین فیوزهای مغناطیسی فیوز سریع نیز وجود دارد که قطع مدار در زمان معینی تنظیم نمی شود بلکه فیوز با عبور جریان بیشتر از نامی خط فوراً قطع می گردد.
ت- فیوز توان بالا
در شبکه های فشار ضعیف با توان زیاد از فیوزهای NH استفاده می شود. این فیوزها دارای دسته ای می باشند که توسط آن فیوزها در جای خود می اندازند و یا خارج می کنند و به آن فیوزکش گویند.
ث- فیوز فشار قوی
فیوزهای H.H برای فشار قوی مورد استفاده قرار می گیرند و خیلی بلندتر از فیوزهای معمولی تا ۵۰۰ ولت است. برای حفاظت ترانسفورماتورهای توزیع و اندازه گیری مورد استفاده قرار می گیرند.
فیوز H.H فقط در جایی بکار برده می شود که قدرت اتصال کوتاه از MVA400 تجاوز نکند. ساختمان فیوز H.H شبیه فیوز فشار ضعیف است. در داخل یک لوله چینی یا فیبری بزرگ سیم فیوز بصورت مارپیچ قرار گرفته و در دو انتها به دو کلاهک فلزی محکم شده است. سیم فیوز بطور آزاد در داخل براده کوارتز قرار گرفته یا مدار در داخل لوله دندانه است و سیم از داخل دندانه ها عبور کرده است. فیوزهای فشار قوی دارای یک سیم فرعی اند که با قطع شدن آن دکمه ای به خارج پرتاب می شود و نشان می دهد که فیوز سوخته است. می توان از حرکت این دکمه برای مدار فرعی استفاده کرد که از قطع فیوز در داخل اطاق فرمان اطلاع حاصل کرد.
انتخاب نوع فیوز
برای خطوط ساده فیوزهای ذوب شونده جهت حفاظت کافی است. اما در شبکه های گسترش یافته با مصرف کنندگان صنعتی تنها فیوزهای ذوب شونده کافی نیست. زیرا در صورت سوختن یکی از سه فیوز قبل از دو فیوز دیگر موتور تحت ولتاژ دو فاز باقی مانده و خطر سوختن آن در بین است. باید از فیوز بی متال و مغناطیسی استفاده کرد مقدار فیوز برای کابل یا سیم معلوم با توجه به شدت جریان مجاز عبوری از سیم و جریان نامی فیوز انتخاب می شود.
جداول زیر جریان مجاز سیم و فیوز را مشخص می کنند.
تعیین افت ولتاژ مجاز و انتخاب سطح مقطع هادی
خطوط هادی الکتریسیته در حقیقت مقاومتهای الکتریکی هستند که از آنها جریان عبور می کند. با اتصال مصرف کننده به چنین خطوطی و عبور جریان از آنها در خط افت ولتاژ پدید می آید.
با توجه به قانون اهم : مقاومت خط × جریان مصرفی = افت ولتاژ
DU = l.R
در انتهای خط ولتاژ به اندازه DU2 کمتر از ولتاژ ابتدای خط است. آنچه که برای مصرف کننده مهم است تامین توان نامی آن است.
برای رسیدن به انی امر باید نکات زیر را درگرفت :
الف- سطح مقطع کابل و در نتیجه مقاومت آن را باید طوری انتخاب کرد که افت توان از حد معینی تجاوز نکند و در ضمن حرارت ایجاد شده در اثر عبور جریان از حد معینی تجاوز نکند.
ب- هادیها باید استحکام مکانیکی کهفی داشته باشند. حداکثر افت ولتاژ به درصد در شبکه های گوناگون مطابق جدول زیر می باشد :
افت ولتاژ قابل در فشار ضعیف برای مصرف کننده های مختلف چنین است :
۱- افت ولتاژ در مورد مصرف کننده های روشنایی ۵/۱ درصد
۲- افت ولتاژ در مورد مصرف کننده های الکترومغناطیسی مانند موتور و غیره ۳ درصد
موازی بستن آلترناتورها :
اتصال یک آلترناتور با آلترناتور دیگر بطور موازی و یا اتصال آلترناتوری به یک شبکه جریان متناوب را عمل سنکرونیزاسیون می نامند. و برای سنکرونیزاسیون مناسب شرایط زیر لازم است :
الف- تساوی ولتاژ موثر آلترناتورها
ب- متناسب بودن سرعت به طوری که فرکانسها باهم برابر باشند.
پ- تساوی فازها
بخش دوم : وسایل کنترل ساده
کلیدها
جهت کنترل وسایل الکتریکی و مصرف کننده ها از وسایل مختلفی استفاده می شود که ساده ترین این وسایل کلیدها هستند. بطور کلی کلید وسیله ای است که با تغییر حالتی که در این وسیله ایجاد می شود. باعث قطع یا وصل مدار می شود. عمل تغییر حالت کلید از نیروی مکانیکی ناشی می شود و نیز اینکه این نیروی مکانیکی مستقیماً به کلید اعمال شود و یا توسط انرژی دیگر مثل الکتریسیته.
می توان کلیدها را کلاً به دو دسته تقسیم نمود :
الف- کلیدهای ساده :
برای تغییر حالت احتیاج به انرژی مکانیکی دارند که بصورتهای یک پل و دو پل و سه پل و … ساخته می شوند که از نظر ساختمان خود نیز به چند دسته تقسیم می گردند.
ب- کلیدهای مرکب :
این کلیدهای نیروی مکانیکی را جهت تغییر حالت از انرژی واسطه ای دریافت می کنند مثل رله ها و کنتاکتورها.
انواع کلیدهای ساده :
کلیدهای ساده بطور کلی به دو دسته تقسیم بندی می شوند :
کلیدهای لحظه ای (شستی ها)
کلیدهای دائمی که معمولاً از نظر ساختمان بصورتهای اهرمی و غلطکی و زبانه ای ساخته می شوند که در مورد هرکدام توضیحاتی داده می شود.
۱-کلید اهرمی ساده
کلید اهرمی ساده از جمله ساده ترین کلیدها بوده و بوسیله اهرمی که به تیغه های کلید نیرو وارد می کند ارتباط برقرار می نماید. تیغه های کلید به صورت یکنواخت به کنتاکتهای ثابت وصل می شوند. معمولاً از کلیدها بیشتر برای جداکردن مدارهای کم جریان استفاده می کنند. در صنعت اغلب به این «کلید چاقویی» و یا «کلید کاردی» می گویند. در کلیدهای جریان کمتر با استفاده از دو کنتاکت که با فاصله قرار دارند با بستن رشته سیم نازکی عمل فیوز را برای هر تیغه انجام می دهند و در کلیدهای قدرت بالاتر از فیوزهای کاردی (NH) در زیر تیغه استفاده می کنند.
۲-کلیدغلطکی
ساختمان این کلیدها از یک استوانه عایق که حول محوری بصورت غلطک حرکت می کند تشکیل شده در روی استوانه در قسمتهای لازم قطعات هادی بصورت نوار قرار داده شده فرم استوانه و قطعات هادی بصورتی است که با حرکت استوانه در حول محورش می تواند کنتاکتهای ثابتی را به هم وصل و یا از هم جدا نماید.۳-کلید زبانه ای
در کلید غلطکی به خاطر تماس و سائیدگی که بین نوار هادی و کنتاکتهای ثابت بوجود می آید از عمر کلید کاسته می شود. به همین خاطر از کلید غلطکی کمتر استفاده می شود و بجای آن از کلید زبانه ای استفاده می شود.
در این کلید بجای قراردادن نوار هادی روی استوانه استوانه را طوری طراحی می کنند که دارای برجستگی و فرورفتگی هایی می باشد که این استوانه حول محور خود حرکت کرده و زبانه هایی را بالا و پائین می برد. زبانه مزبور کنتاکتهای متحرک را به کنتاکتهای ثابت وصل و یا‌آنها را از هم جدا می کند. این کلید بصورتهای روکار و توکار بکار می رود.
راه اندازی الکتروموتور با استفاده از کلیدهای ساده :
مصرف کننده های سه فاز و الکتروموتورهای با قدرت کم را می توان بطور مستقیم به شبکه وصل کرد. در راه اندازی به طور مستقیم از انواع کلیدهای ساده استفاده می کنند. معمولاً این گونه کلیدها ۶ کنتاکت دارند که سه کنتاکت ورودی با حرفهای R,S,T و سه کنتاکت خروجی به حرفهای U,V,W مشخص و دارای دو حالت قطع و وصل می باشند که با علامتهای (O) برای قطع و (I) برای وصل. در نقشه های الکتریکی کلیدها را در حالت قطع نشان می دهند.
راه اندازی موتورها با استفاده از کلید ستاره – مثلث :
همانطوریکه گفته شد موتورهای قدرت پائین را می توان بطور مستقیم به شبکه وصل کرد.
اما الکتروموتور با قدرتهای بالاتر را به علت جریان نسبتاً زیاد در راه اندازی نباید مستقیماً به شبکه وصل کرد بلکه بطور تدریجی، که روشهای مختلفی برای این کار وجود دارد که ساده ترین آنها راه اندازی به روش ستاره مثلت است که هم با کلیدهای ساده و هم مرکب قابل اجرا می باشد.
کلیدهای ستاره- مثلث ساده نیز معمولاً بصورت غلطکی و زبانه ای ساخته می شدند.
این کلید ابتدا سیم پیچهای موتور را بصورت ستاره به شبکه وصل می کند. پس از اینکه موتور به سرعت نرمال خود رسید، با تغییر حالت کلید سیم پیچهای موتور را به حالت مثلث در شبکه قرار می دهد.
پس کلید دارای سه حالت قطع – ستاره و مثلث می باشد.
بخش سوم : کلیدهای مرکب
کلیدهای مرکب
همانطور که گفته شد کلیدهای مرکب نیروهای مکانیکی جهت قطع و وصل را از انرژی واسطه ای مانند الکتریسیته دریافت می کنند مانند رله و کنتاکتور.
تعریف رله :
بطور کلی رله به دستگاهی گفته می شود که در اثر تغییر کمیت الکتریکی و یا کمیت فیزیکی مشخص تحریک شده و موجب بکار افتادن دستگاه یا ماشینی بشود.
تعریف کنتاکتور :
کنتاکتور نیز یک رله است (کلید بوبین دار) که مانند کلید ساده سه فاز دارای سه کنتاکت برای وصل مدار قدرت و کنتاکتهای کمکی جهت مدار فرمان می باشد و اساس کارش بر مبنای بوبین سیم پیچی شده با هسته آهنی است.
-سیم پیچ کنتاکتور ممکن است با جریان مستقیم یا متناوب و یا ولتاژ های ۳۳۰، ۲۲۰، ۱۲۷، ۱۱۰ و … و با جریان کم تحریک شود. هسته آهنی از دو قسمت که یکی ثابت و دیگری متحرک است ساخته شده.
قسمتی که در زیر قرار گرفته ، ثابت و قسمت بالائی متحرک است و توسط فنر از قسمت ثابت فاصله می گیرد. سیم پیچ کنتاکتور روی قرقره پیچیده در وسط هسته جای می گیرد. زمانی که این بوبین تحریک شود بخش ثابت هسته بخش متحرک را به سمت خود می کشد و هنگامی که بوبین از منبع انرژی قطع شود.
فنرها قسمت متحرک را مجدداً به جای خود برمی گردانند.
بر روی قسمت متحرک، کنتاکتهای کنتاکتور نصب شده است که با حرکت هسته بالا و پائین می روند.
و با کنتاکتهای ثابتی که در اطراف کنتاکتور قرار دارد تماس برقرار می کنند. بدین ترتیب که کنتاکتهایی که از نظر الکتریکی باز بودند، در اثر جذب هسته بالایی بسته و کنتاکتهای بسته باز می شوند.
کنتاکتهای یک کنتاکتور به دو دسته اصلی و فرعی تقسیم می شوند :
کنتاکتهای اصلی برای ورود جریان سه فاز از شبکه به مصرف کننده و کنتاکتهای فرعی به عنوان کنترل در مدار فرمان عمل می کنند. معمولاً جریانی که کنتاکتهای فرعی می توانند از خود عبور دهند کمتر از جریانی است که کنتاکتهای اصلی از خود عبور می دهند.
ساختمان داخلی کنتاکتور بصورت زیر می باشد :
قاب نگهدارنده کنتاکتهای بالایی
تیغه اصلی
بوبین
هسته
حلقه اتصال کوتاه
کنتاکت اصلی
کنتاکت فرعی
بست نگهدارنده
فنر
قاب نگهدارنده کنتاکتهای پایین
کانال جداکننده
پین نگهدارنده
کنتاکت اصلی
کنتاکت فرعی
بست نگهدارنده
مشخصات کنتاکتور :
مشخصات الکتریکی و حرارتی و مکانیکی هر کنتاکتور بصورت زیر می باشد :
الف- ولتاژ نامی :
هر کنتاکتور ممکن است در شبکه های مختلفی از ولتاژ و فرکانس کار کند لذا باید قطعات آن از نظر عایق تحمل ولتاژ و فرکانس شبکه مزبور را داشته باشد.
ب- جریان نامی :
حجم و شکل هر کنتاکتور مانند هر کلید دیگر باید متناسب باشد با جریانی که آن را قطع و وصل می کند و نیز نوع بار مهم است. به عنوان مثال کنتاکتور ۶۳ آمپری برای یک بار القایی می تواند جریان بیشتری را برای یک بار اهمی مثلاً روشنایی تحمل کند. به همین دلیل شرایط کار در ۴ حالت زیر استاندارد شده است : RC1­ , RC2 , RC3 , RC4
RC1 :
این نوع شامل کلیه دستگاههای غیرالقایی می باشد.
نوع RC2 :
این حالت برای راه اندازی الکتروموتور با رتور سیم پیچی می باشد. جریان راه اندازی تقریباً دو برابر جریان نامی موتور است البته مقدار دقیق جریان بستگی به مقاومت مدار رتور دارد.
در حالت بازشدن تیغه ها جریان نامی موتور را قطع می کنند. ولتاژی که در دو سرآنها بوجود می آید تابعی است از نیروی ضدمحرکه موتور و حالت قطع به اسانی انجام می پذیرد.
نوع RC3 :
این حالت برای راه اندازی الکتروموتورهای القایی رتور قفسی است. در حالت بسته شدن کنتاکتور جریان راه اندازی الکتروموتور را تحمل می کند و در زمان بازشدن جریان نامی که توسط موتور از شبکه کشیده می شود را قطع می کند.
نوع RC4 :
این حالت شامل راه اندازی، ترمز، تغییر جهت جریان در الکتروموتورهای رتور قفسی است. در این حالت نیز جریان در زمان بسته شدن کنتاکتور جریان راه اندازی ۵ تا ۷ برابر جریان موتور است. قطع در این نوع تقریباً مشکل است.
الف- انرژی مصرفی :
ب- انرژی مصرفی :
سیم پیچ بوبین هر کنتاکتور را می توان برای کار با ولتاژهای مختلف طراحی نمود از ۱۲ ولت جریان مستقیم تا ۵۰۰ ولت جریان متناوب. البته اگر جریان مستقیم به سیم پیچ داده شود، بهتر است.
به همین علت در بعضی از کنتاکتورها با استفاده از یکسوکننده ها جریان متناوب شبکه را برای مصرف سیم پیچ کنتاکتور یکسو می کنند.
به علت عبور جریان از سیم پیچ بوبین، کنتاکتور بصورت یک مصرف کننده، مقداری توان مصرف کرده و گرم می شود. یک کنتاکتور خوب باید دارای مصرف داخلی کم باشد. برای کم کردن مصرف کنتاکتور می توان از یک مقاومت که بعد از عمل کردن کنتاکتور با سیم پیچ بوبین سری می شود استفاده کرد.
پ- درجه حرارت کار :
کنتاکتور نیز مانند دیگر وسایل، در درجه حرارت معینی از محیط باید قابل کارکردن باشد. معمولاً درجه حرارت کار کنتاکتور از ۲۰- تا ۶۰+ سانتی گراد است.
ت- جریان حرارتی :
حداکثر جریانی که در اثر عبور آن کنتاکتور خراب می شود را جریان حرارتی کنتاکتور می نامند.
و این جریان غیر از جریان نامی کنتاکتور است. جریان مزبور نیز روی کنتاکتورها نوشته می شود.
ث- تعداد تیغه ها :
همانطور که گفته شد هر کنتاکتور دارای دو قسمت تیغه است. تیغه های اصلی که معمولاً سه تیغه باز برای قطع و وصل مدار قدرت و تعدادی تیغه های فرعی باز و بسته که در اصطلاح به آن تیغه های کمکی گویند.
ج- زمان قطع و وصل.
عمر مکانیکی :
هر کنتاکتور پس از زمان معینی فرسوده و غیرقابل استفاده می گردد. این زمان را عمر مکانیکی کنتاکتور می نامند.
د- نرم (استاندارد) کنتاکتور :
کنتاکتورها با استاندارهای مشخصی ساخته می شوند که استانداردها بصورت زیر با علامتهای اختصاری آمده است :
آشنایی با قطع کننده های ولتاژ (سکسیونرها) و کلیدهای قدرت (دیژنکتورها).
به طور کلی کلیدها وسیله ارتباط سیستمهای مختلف هستند و باعث عبور و یا قطع جریان می شود. کلید در حالت بسته یعنی عبور جریان و یا در حالت باز یعنی قطع جریان دارای مشخصاتی به شرح زیر می باشد :
۱-در حالت قطع دارای استقامت الکتریکی کافی و مطمئن در کل قطع شدگی است.
۲-در حال وصل باید کلید در مقابل کلیه جریانهایی که امکان عبور آن در مدار هست حتی جریان اتصال کوتاه مقاوم و پایدار باشد و این جریانها و اثرات ناشی از آن نباید کوچکترین اختلالی در وضع کلید و هدایت صحیح جریان به وجود آورد. بدین ترتیب باید کلید فاز قوی در مقابل اثرات دینامیکی و حرارتی جریانها مقاومت باشد. البته برای اینکه ساختمان کلید ساده تر و از نظر اقتصادی مقرون به صرفه باشد. اغلب استقامت الکتریکی و دینامیکی و حرارتی کلید را توسط دستگاههای حفاظتی تا حدودی محدود می کنند کلیدهای فشار قوی را می توان برحسب وظایفی که به عهده دارند به انواع مختلف زیر تقسیم نمود :
۱- کلید بدون بار یا سکسیونر
۲- کلید قابل قطع زیر بار یا سکسیونر قابل قطع زیر بار
۳- کلید قدرت یا دیژنکتور
۱-سکسیونر ساده :
سکسیونر وسیله قطع و وصل سیستمهایی است که تقریباً بدون جریان هستند به عبارتی دیگر سکسیونر قطعات و وسایلی را که فقط زیر ولتاژ هستند از شبکه جدا می سازد. برحسب این تعریف در صورتی که اختلاف پتانسیای بین دو کنتاکت سکسیونر ظاهر نشود قطع آن بلامانع است. همینطور وصل سکسیونر که بین دو کنتاکت آن تفاوت پتانسیلی موجود نباشد مجاز خواهد بود از آنچه گفته شد چنین نتیجه می شود که در واقع سکسیونر یک ارتباط دهنده یا قطع کننده مکانیکی بین سیستمها است. سکسیونر باید در حالت بسته یک ارتباط مکانیکی محکم و مطمئن در کنتاکت هر قطب برقرار سازد و مانع افت ولتاژ گردد لذا باید مقاومت عبور جریان در محدوده سکسیونر کوچک باشد تا حرارتی که در اثر کار مداوم در کلید ایجاد می شود از حد مجاز تجاوز نکند.
این حرارت توسط ضخیم کردن تیغه و بزرگ کردن سطح تماس در کنتاکت و فشار تیغه در کنتاکت دهنده کوچک نگه داشته می شود در ضمن باید سکسیونر طوری ساخته شود که در اثر جرم و وزن تیغه یا فشار باد و برف و غیره خود به خود بسته نشود.
موارد استعمال سکسیونرها :
به منظور حفاظت اشخاص و متصدیان مربوطه در مقابل برق زدگی بکار برده می شود به این جهت طوری ساخته می شوند که در حالت قطع شدگی یا چسبندگی به طور واضح وآشکار قابل رویت باشند. یعنی در هوای آزاد انجام گیرند. از‌ آنجایی که سکسیونر باعث بستن یا بازکردن مدار الکتریکی نمی شود (برای بازکردن و بستن هر مدار الکتریکی فشار قوی احتیاج به یک کلید دیگری خواهیم داشت به نام) کلید قدرت که قادر است مدار را تحت هر شرایطی باز کند سکسیونر وسیله ای است برای ارتباط کلید قدرت به شین و یا هر قسمت دیگری از شبکه که دارای پتانسیل است. سکسیونر را می توان از نظر ساختمانی به انواع مختلف زیر تقسیم نمود :
۱- تیغه ای ۲- کشویی ۳-دورانی ۴-قیچی ای.
برای جلوگیری از قطع و وصل بی موقع و در زیر بار سکسیونر معمولاً بین سکسیونر و کلید قدرت چفت و بست مکانیکی یا الکتریکی به نحوی برقرار می شود که هنگام وصل بودن کلید قدرت سکسیونر را به هیچ وجه نتوان قطع یا وصل کرد.
مشخصات مهم یک سکسیونر که گویای مشخصات فنی و استقامت الکتریکی و دینامیکی است.
ولتاژ نامی Vn
جریان نامی In
جریان اتصال کوتاه ضربه ای Is
جریان اتصال کوتاه کوتاه مدت (معمولاً ۱ تا ۳ ثانیه) Ith
سکسیونرهای قابل قطع زیربار :
به علت اینکه در بیشتر شبکه ها و پستهای کوچک کلید قدرت و سکسیونر و وسایل اضافی مربوط به چفت و بست آنها مبالغ زیادی از مخارج و هزینه کل تاسیسات را شامل می گردد و به علت اینکه در اغلب موارد نصب کلید قدرت با مزایای قطع و وصل سریع آن حتماً لازم و ضروری نیست کلید سکسیونر قابل قطع زیر بار طرح و ساخته شد سکسیونر قابل قطع زیر بار در ضمن اینکه باید وظیفه یک سکسیونر را انجام دهد یعنی در ضمن برداشتن ولتاژ یا قطع شدگی قابل رویت و مطمئن در مدار شبکه فشار قوی بوجود آورد باید قادر باشد مانند یک دیژنکتور نیز قدرتها و جریانهای کوچک الکتریکی را نیز قطع کند لذا هر سکسیونر قابل قطع زیر بار باید دارای وسیله ای برای قطع فوری جرقه باشد. سکسیونر قابل قطع زیربار اصولاً دارای قدرت وصل بسیار زیاد است و می تواند شدت جریانهایی با شدت ۲۵ تا ۷۵ کیلوآمپر را به خوبی وصل کند.
ولی قدرت قطع آن کم واز ۴۰۰ تا ۱۵۰۰ آمپر تجاوز نمی کند لذا نتیجه می شود که این کلیدها برای قطع جریان اتصال کوتاه ساخته نشده و مناسب هم نمی باشند. در صورتی می توان از سکسیونر قابل قطع زیربار در شبکه های فشار قوی استفاده کرد که مجهز به فیوزهای فشارقوی باشند فیوزهای فشار قوی در ولتاژ ۲۰ کیلو ولت دارای قدرت قطعی در حدود ۴۰۰ مگاولت آمپر می باشند که جریان اتصال را در همان مراحل ابتدایی قطع می کنند از آنچه گفته شد نتیجه می شود که سکسیونر قابل قطع زیربار فقط برای قطع جریان نامی شبکه مناسب است و جریان اتصال کوتاه را فیوز قطع می کند نه کلید البته باید متذکر شد که پس از قطع جریان اتصال کوتاه توسط سوختن فیوز ساچمه فیوز به طور خودکار باعث قطع سکسیونر به صورت سه فازه خواهد شد چون سکسیونر قابل قطع زیربار باید مدارهای حاصل جریان را قطع و وصل بکند. بنابراین بایستی مجهز به محفظه احتراق بوده که در داخل آن محفظه احتراق جرقه و قوس الکتریکی حاصل از قطع و وصل جریان را خاموش کند.
به محض فرمان قطع کلید تیغه اصلی از کنتاکت تیغه اصلی از کنتاکت ثابت کلید جدا می شود و قوس الکتریکی که ایجاد می گردد در اثر دو عامل زیر خاموش می گردد :
۱- در اثر حرارت قوس الکتریکی مقداری گاز از سطح داخلی عایق متصاعد شده که باعث خنک شدن جرقه شده و عمل خاموش شدن جرقه را سهل تر می سازد.
۲- فاصله بین دو کنتاکت دارای جرقه در اثر بازشدن فنر در داخل محفظه احتراق به سرعت زیاد شده این اضافه فاصله باعث قطع جرقه می گردد.
کلید قدرت یا دیژنکتور :
دیژنکتور کلیدی است که می تواند در موقع لزوم جریان عادی شبکه و در موقع بروز خطا جریان اتصال کوتاه و یا جریان اتصال زمین و یا هر نوع جریانی با هر اختلاف فازی را سریعاً قطع کند در اتصال سه فاز که یک حالت خاصی از بار متعادل است با اینکه فرمان قطع به هر سه قطب کلید یکجا و در یک زمان داده می شود ولی قطع هر سه فاز تقریباً در فاصله یک چهارم پریود که معمولاً از نظر زمانی بسیار کوتاه است انجام می گیرد. در انتخاب دیژنکتور باید به نکات زیر توجه شود :
۱- ولتاژ نامی کلید که معمولاً برابر ولتاژ شبکه ای است که کلید در آن نصب می شود و می تواند حدود ۱۵% هم از ولتاژ شبکه کوچکتر باشد.
۲- جریان نامی کلید که مساوی با بزرگترین جریان کار معمولی شبکه است.
۳- قدرت نامی قطع دیژنکتور که باید با قدرت اتصال کوتاه در محل کلید مطابقت کند در ضمن با همین قدرت قطع قدرت وصل نامی دیژنکتور نیز عملاً مشخص می شود زیرا برحسب تعریف VDE باید قدرت وصل کلید در حدود ۵/۲ برابر قدرت قطع آن باشد.
انواع دیژنکتورها :
۱- روغنی ۲-کم روغن ۳-هوایی ‍(هوای فشرده) ۴-گازی(گاز SF6)
کلیدهای با قطع و وصل خودکار :
در وسایل خانگی، صنعتی و تجاری کلیدهای بسیاری یافت می شوند که فرمان قطع خود را از سیستم یا وسیله دیگری دریافت می کنند و در نتیجه وسایل متصل به مداری را بطور اتوماتیک کنترل می کنند برخی از انواع مهم این کلیدها را در ذیل تشریح می کنیم :
۱-کلیدهای ساعتی : این کلیدها برای قطع و وصل اتوماتیک مدارها در ساعت معین بکار گرفته می شوند. برخی از این مدارها نظیر چراغهای ویترینها و چراغ خیابانها می باشند. در انتخاب این نوع کلیدها لازم است به جریان مدار وظرفیت کلیدها که برحسب آمپر داده می شود توجه شود.
این کلیدها ساختمانهای مختلف دارند. در یک نوع آن از موتور کوچکی که از نوع سنکرون انتخاب می شود استفاده می شود که البته در صورت قطع برق از کار می ایستد. در نوع دیگر ساعت مجهز به فنر است که توسط موتور برقی کوک می شود و در صورت قطع برق بکار خود ادامه می دهد و دچار اختلال نمی گردد. در وصل کلیدهای ساعتی حتماً باید فیوزی برای حفاظت موتور و فیوز دیگری برای حفاظت مدار بکار برد.
۲-کلید فشاری : این کلیدها از تغییرات فشار فرمان می گیرند و برای کنترل موتورهایی که تلمبه و یا کمپرسورها را می گردانند یا برای قطع توربین های بزرگ در صورت کم شدن فشار روغن یاتاقانها مورد استفاده قرار می گیرند.
۳-کلید حدی (محدود کننده مامیکر و سوئیچ) : این کلیدها از حرکت و برخورد ماشین با وسایل متحرک به نقطه ثابتی فرمان می گیرد و حرکت آنها را کنترل می کند. این کلیدها در جرثقیل ها و آسانسورها در مکانی که حداکثر تغییر مکان مجاز دستگاه را معین می کند نصب می شود و دستگاه در برخورد به دسته آن مدار را قطع می کند و سبب توقف می گردد. از این کلید در مدارهای فرمان برای کنترل و محدود کردن حرکت قسمتهای مکانیکی، تغییر جهت حرکت و در تایمرها و شناورها و … بعنوان کلید قطع یا وصل استفاده می شود. ساختمان این کلید مانند شستی بوده و توسط سیستم متحرک به آن نیروی فشار وارد شده و یا کشیده می شود. به همین دلیل سر اهرم متحرک آن بفرمهای مختلف ساده، قرقره ای، گلوله ای و … می باشد. در میکروسوئیچ نیز مانند شستی، یا برطرف شدن نیروی مکانیکی وارده به اهرم آن مجدداً انرژی ذخیره در فنر میکروسوئیچ آن را به حالت اول برمی گرداند.
۴-کلیدهای حرارتی : این کلیدها از تغییرات درجه حرارت فرمان قطع و وصل می گیرند و در وسایل مثل سیستم حرارتی مرکزی و یا یخچال و اتوبرقی مورد استفاده قرار می گیرند.
بی متال ‍(رله حرارتی) :
جهت حفاظت موتور در برابر اضافه بار از قطع کننده حرارتی (بی متال) استفاده می شود اساس کار رله حرارتی مانند فیوز حرارتی بی متال می باشد. رله حرارتی دارای سه کنتاکت ورودی و سه کنتاکت خروجی می باشد که در مدارات قدرت و بین کنتاکتور و موتور قرار می گیرد دور هر بی متال چند دور سیم مقاومت دار پیچیده شده که از آن جریان عبور می کند. در اثر عبور جریان از سیم بی متالها گرم شده و خم می شوند. مقدار خم شدن بی متال بستگی به درجه حرارت و همچنین مقدار جریان عبوری از موتور دارد. گرمای حاصل بیش از حد مجاز بی متال را خم کرده و روی کنتاکت کناری که در مدار فرمان قرار می گیرد اثر گذاشته و تیغه وصل را قطع نموده و می تواند تیغه به کنتاکت دیگری وصل شده و لامپ خبر را روشن و آژیری را به صدا درآورد. روی هر بی متال پیچ تنظیم جریان نیز وجود دارد که توسط آن می توان جریان را به اندازه لازم تنظیم نمود ‍(با توجه به جریان نامی موتور). پس از عمل کردن بی متال کنتاکتور قطع شده و بی متال مجدداً سرد و به حالت اول خود بازمی گردد، در اغلب بی متالها کنتاکت باز شده و پس از سردشدن بی متال به حالت اول خود باز نمی گردد و بسته نمی شود و بایستی با فشار دادن دکمه ای که روی بی متال قرار دارد مجدداً به حالت وصل درآورد.
در بعضی رله های حرارتی حالت MAN و AUTO وجود دارد که با قراردادن اهرم روی AUTO پس از عمل کردن رله، مجدداً بعد از مدتی به حالت اولیه درمی آید.
تایمر(کلید زمانی) :
تایمر کلیدی است مرکب که مانند شستی یا میکروسوئیچ به مدار کنتاکتور فرمان می دهد. فرق تایمر با شستی یا میکروسوئیچ در نوع فرمان دادن آن می باشد شستی بوسیله دست فرمان می گیرد، اما تایمر پس از گذشت مدت زمانی که روی آن تنظیم می شود بطور خودکار فرمان می دهد. بنابراین می توان گفت که تایمر یک شستی اتوماتیک است. تایمر جزء کلیدهای مرکب است، چون از انرژی واسطه ای برای قطع و وصل استفاده می کند. تایمر موارد استعمال زیادی در صنعت دارد، یکی از مهمترین مورد استعمال تایمر در راه اندازی موتورهای سه فازه بصورت ستاره و مثلث می باشد.
تایمرها در انواع مختلف ساخته می شوند که به شرح چند نوع آن می پردازیم :
۱-تایمر موتوری (رله زمانی موتوری) : این تایمر دارای یک موتور کوچک جریان متناوب یک فاز می باشد که با عبور جریان به حرکت درآمده و سرعت آن توسط چرخ دنده هایی کم شده و صفحه دیسک مانندی که روی آن یک زایده قرار دارد را به حرکت در می آورد. (این صفحه در روی محور موتور قرار دارد) با رسیدن این زایده به میکروسوئیچ داخل تایمر باعث فشار به اهرمی شده و کنتاکتهای دیگر را قطع می نماید. زمان عمل تایمر بستگی به محل صفحه و در حقیقت بستگی به فاصله زایده روی صفحه تا اهرم میکروسوئیچ دارد. لذا برای تنظیم زمان تایمر می توان پیچی که روی تایمر می باشد و مدرج است را برای زمان دلخواه تنظیم نمود.
۲-تایمر الکترونیکی : از این تایمر برای تنظیم زمانهای کمتر از ثانیه تا چند ثانیه استفاده می شود. ساختمان این تایمر از مدارات و اجزاء الکترونیکی استفاده شده و با شارژ یا شارژ شدن یک خازن، بوبین رله تحریک می شود. در ساده ترین نوع تایمر الکترونیکی یعنی در تایمر نوع خازنی رله هنگامی وصل می شود که خازن شارژ شده و ولتاژ دو سر آن برابر ولتاژ وصل رله شود (پس از وصل رله بار ذخیره شده در خازن روی مقاومتی که توسط کنتاکت باز رله به دو سر خازن وصل می شود) تخلیه می گردد. در این مدار با تغییر ظرفیت خازن می توان تایمر را تنظیم نمود.
۳-تایمر پنیوماتیک : این تایمر دارای یک کپسول هوا و یک بوبین (سیم پیچ) با هسته آهنی می باشد. وقتی که بوبین تحریک شود، هسته متحرک را جذب می نماید، در اثر جذب هسته متحرک اهرم بالای آن قطعه ای را که بشکل دم آهنگری است فشار خواهد داد و هوای داخل دم از طریق سوپاپ خارج می شود. وقتی که بوبین از تحریک خارج شود. فنر دم را منبسط می کند. دم از طریق سوپاپ تنظیم از هوا پر می شود. انبساط دم در رابطه با پیچ تنظیم فرق می کند. کار این تایمر شبیه تایمر موتوری می باشد با این تفاوت که تایمر موتوری پس از وصل موتور آن به ولتاژ شروع بکار کرده و بعد از زمان تعیین شده برای آن عمل می کند ولی تایمر پنیوماتیک پس از قطع بوبین آن از ولتاژ شروع به کار کرده و بعد از زمان تعیین شده برای آن عمل می کند.
۴-تایمر حرارتی (رله زمانی حرارتی) : این تایمر دارای بی متال می باشد و زمانیکه جریان وارد آن می شود گرم شده و پس از مدتی عمل قطع یا وصل را انجام می دهد. دقت این تایمر زیاد نیست (سرما و گرمای محیط روی آن اثر می گذارد) به همین جهت از آن در برق صنعتی استفاده نمی کنند، ولی بصورت رله زمانی و راه پله در سیم کشی ساختمان مور داستفاده قرار می گیرد.
تایمرها بطور کلی به دو نوع تقسیم بندی می شوند :
الف- تایمر با تاخیر در وصل (ON – DELAY) به این نوع تایمر باید انرژی داده شود و سپس رله عمل کرده و کنتاکتی را باز یا بسته نماید. مانند رله زمانی موتوری.
ب- تایمر با تاخیر در قطع (OFF – DELAY) این تایمر بعد از قطع انرژی عمل کرده و کنتاکتی را باز یا بسته می نماید. مانند رله زمانی پنیوماتیکی.
زمان تعیین شده در تایمرها خیلی دقیق بوده و حدود دهم ثانیه می باشد.
تایمرها را همواره بایستی همراه کنتاکتور بکار برد و هیچ وقت نباید از آن بجای کلید استفاده نمود.
آشنایی با مدارهای فرمان
بهره برداری مطمئن و بی وقفه از تاسیسات الکتریکی و مراکز تولید نیرو و تامین انرژی الکتریکی مورد نیاز تجهیزات برقی کارخانه جات صنعتی و مراکز اقتصادی تا حدود زیادی به خصوصیات و ویژگی ها و طرز عمل کلیدها و وسایل کنترل مدارها بستگی دارد.در مدارهای الکتریکی وسایل مختلفی به کار میرود که از مهمترین انها کنتاکتور یا کلید مغناطیسی است .استفاده از این کنتاکتور در مدارهای کنترل تنوع طراحی های مختلف را به وجود می آورد.برای طراحی مدارهای کنترل و کار با آنها باید وسایل تشکیل دهنده آن را به طور کامل شناخت و به اصول ساختمان و مورد استفاده این وسایل آشنا شد.وسایلی که در مدارهای فرمان به کار میروند به این قرار است:۱_کنتاکتور(کلید مغناطیسی)۲_شستی استاپ استارت۳_رله الکتریکی۴_رله مغناطیسی۵_لامپ های سیگنال ۶-فیوزها ۷_لیمیت سویچ۸_کلیدهای تابع فشار ۹_کلیدهای شناور۱۰_چشم های الکتریکی(سنسورها)۱۱_تایمر و انواع آن۱۲_ترموستات۱۳_کلیدهای تابع دور
در مورد کنتاکتور میتوان گفت که یک کلید مغناطیس است که وقتی ولتاژ مورد نظر به آن اعمال میشود یک سری کنتاکت(یا کلید)باز را بسته و یک سری کنتاکت بسته را باز میکند.که با استفاده از این خاصیت مدارهای مختلفی میتوان مدارهای زیادی رو طراحی کرد.ساختمان کنتاکتور:این کلید از دو هسته به شکل E یا U که یکی ثابت و دیگری متحرک است و در میان هسته ثابت یک بوبین یا سیم پیچ قرار دارد،تشکیل شده است. وقتی بوبین به برق وصل میشود با استفاده از خاصیت مغناطیسی ،نیروی کششی فنر را خنثی میکند و هسته فوقانی را به هسته تحتانی متصل کرده باعث میشود که تعدادی کنتاکت عایق شده از یکدیگر به ترمینال های ورودی و خروجی کلید متصل میشود و یا باعث باز شدن کنتاکت های بسته کنتاکتور بسته کنتاکتور گردد.در صورتی که مدار تغذیه بوبین کنتاکتور قطع شود ،در اثر نیروی فنری که داخل کلید قرار دارد هسته متحرک دباره به حالت اول باز میگردد.مزایای استفاده از کنتاکتورکنتاکتورها نسبت به کلیدهای دستی صنعتی مزایایی به شرح زیر دارند:۱_مصرف کننده می تواند از راه دور کنترل می شود.۲_مصرف کننده میتواند از چند محل کنترل شود.۳_امکان طراحی مدار فرمان اتوماتیک برای مراحل مختلف کار مصرف کننده وجود دارد.۴_سرعت قطع و وصل کلید زیاد و استهلاک آن کم است.۵_از نظر حفاظتی مطمئن ترند و حفاظت مطمئن تر و کامل تری دارند.۶_عمر موثرشان بیشتر است.۷_هنگام قطع برق،مدار مصرف کننده نیز قطع می شود و به استارت مجدد پیدا میکند؛در نتیجه از خطرات وصل ناگهانی دستگاه جلو گیری می کند.کنتاکتور برای جریان های AC وDC ساخته میشود.تفاوت این دو کنتاکتور در این است که در کنتاکتور های AC از یک حلقه اتصال کوتاه برای جلوگیری از لرزش حاصل از فرکانس برق استفاده می شود. نیروی کششی یک مغناطیس الکتریکی جریان متناوب،متناسب با مجذور جریان عبوری از آن و در نتیجه متناسب با مجذور اندکسیون مغناطیسی است.چون مقدار جریان لحظه ای با توجه به رابطه i=ImaxSIN wt تعقیر میکند،نیروی کششی مغناطیسی نیز برابر باF=Fmax sin wt (سینوس توان ۲ دارد که نمیشد تایپ کنی)خواهد شد و تعداد دفعاتی که این نیرو ماکزیمم و صفر می شود، به اندازه دو برابر فرکانس شبکه خواهد گردید.در نتیجه ،در لحظاتی که مقدار نیروی کششی بیشتر از نیروی مقاوم فنر های کنتاکتور باشد ،هسته کنتاکتور جذب می شود و در لحظاتی که مقدار نیروی کششی کمتر از مقدار نیروی فنر ها شود،هسته متحرک هسته نیز آزاد شده و به محل اول خود باز می گردد.بدین ترتیب در هسته متحرک لرزش و صدا ایجاد خواهد شد این نوسانات را می توان به وسیله یک حلقه بسته در سطح قطب ها جا سازی شده و حدود نصف تا ۳/۲ سطح هر قطب را پوشانده است از بین برد و لرزش آن را برطرف کرد. عمل این حلقه آن است که مانند سیم پیچ ثانویه ترانسفورماتوری که در حالت اتصال کوتاه قرار گرفته است،از آن جریان القایی عبور میکند و باعث ایجاد فوران مغناطیسی فرعی در مدار هسته می شود. این فوران فرعی با فوران اطلی اختلاف فاز دارد و در زمانی که نیروی کششی حاطل از فوران اطلی صفر باشد ،نیروی کششی حاصل از فوران اطلی ماکزیمم خواهد بود و در حالتی که نیروی حاصل از فوران ماکزییم باشد ،این نیرو صفر خواهد بود و چون جمع این دو نیرو به هسته متحرک اثر میکند،نیروی کششی در هر لحظه از نیروی مقاومت فنر بیشتر خواهد بود.ولتاژ تغذیه بوبین متفاوت است و از ۲۴ تا ۳۸۰ولت ساخته می شود. در اکثر کشورهای صنعتی برای حفاظت بیشتر ،تغذیه بوبین کنتاکتور را زیر ولتاژ حفاظت شده (۶۵ولت)انتخاب میکنند. و یا برای تغذیه مدار فرمان ،ترانسفورماتور مجزا کننده به کار می برند.شناخت مشخصات کنتاکتورنوع کنتاکتوربا توجه به نوع مصرف کننده و شرایط کار ،کنتاکتورها دارای قدرت و جریان عبوری مشخصی برای ولتاژهای مختلف هستنند. بنابراین باید به جدول و مشخصات کنتاکتور توجه کافی مبذول کرد و انخاب کنتاکتو.را منطبق بر مشخصات مورد نیاز قرار داد.برای اتصال مصرف کننده به شبکه باید از کلید یا کنتاکتوری با مشخصات مناسب استفاده کرد که کنتاکت های آن تحمل جریان راه اندازی و جریان دائمی را داشته باشد و همچنین در صورت اتصال کوتاه،جریان لحظه ای زیادی که از مدار عبور می کند. و یا جرقه ای که هنگام اتصال مدار ایجاد می شود ،صدمه ای به کلید نزند.بدین منظور و برای این که بتوانیم پس از طراحی مدار ،کنتاکتور مناسب را برای اتصال مصرف کننده به شبکه انتخاب کنیم،باید با مقادیر نامی مربوط به کنتاکتور آشنا شویم.برای انتخاب کنتاکتور در قدرت های مختلف می توان از جدول هایی استفاده کرد.
شستی استاپ استارت و سلکتور سوئیچ های فرمانشستی ها از جمله وسایل فرمان هستنند که تحریک آنها به وسیله دست انجام میگیرد و در انواع مختلف و برای کاربردهای متفاوت طراحی می شوند.شستی که پس از تحریک،دو کنتاکت وصل را قطع میکنند استاپ(قطع) و شستی هایی که پس از تحریک دو کنتاکت،قطع را وصل می کنند شستی استارت (وصل) نامیده می شوند. شستی های که هر دو عمل را در یک زمان انجام می دهند،به شستی استارت استاپ یا دوبل معروف هستنند یعنی با فشار کلید دو کنتاکت باز بسته و دو کنتاکت بسته باز می شود.تصویر چند کلید استاپ استارت و در یکی از عکس ها یک کاربرد اونو به نمایش گذاشته شده در ضمن در عکسی که سه کلید دارد کلید وسطی دوبل می باشد.رله اضافه بار(حرارتی یا بیمتال)دستگاه های الکتریکی را باید در مقابل خطرات و خطاهای احتمالی حفاظت کرد.یکی از راه های حفاظت موتورهای الکتریکی ،استفاده از رله حرارتی و رله مغناطیسی است رله حرارتی موتور را در مقابل اضافه بار حفاظت میکند.رله اضافه باری جهت کنترل جریان موتورهای الکتریکی بکار میرود و یک نوع رله حفاظتی است.این رله از دو فلز مختلف الجنس که ضرایب انبساط طولی مختلفی دارند تشکیل شده است. به اطراف این دو فلز به هم چسبیده ،یک رشته سیم حامل جریان الکتریکی پیچیده شده را طوری تنظیم کرد که در اثر افزایش کم جریان ،دستگاه مربوطه بدون دلیل و به سرعت قطع نشود با استفاده از این منحنی ها همچنین می توان آنرا طوری تنظیم کرد که زمان قطع زیاد شده و عبور جریان اضافی موجب صدومه به دستگاه نشود.شرایط کار این رله ها از(۲۰-)درجه تا (۶۰+)درجه سانتی گراد متغیر است .رله مغناطیسیرله مغناطیسی نیز برای کنترل جریان به کار می رود . اصول کار این رله بر اساس پدیده مغناطیس پایه گذاری شده است .از این رله برای قطع جریان های اتصال کوتاه استفاده می شود.می دانیم که یک اتصال کوتاه باید سریع قطع شود بنابر این در چنین موقعیتی نمی توان از رله اضافه باری(حرارتی)استفاده نمودچون گرم شدن بیمتال رله به یک زمان نسبتا طولانی نیاز دارد.این رله از یک هسته مغناطیسی که اطراف آن چند دور سیم پیچیده شده تشکیل گردیده است.عبور جریان اتصال کوتاه باعث مغناطیس شدن و جذب اهرم قطع می شود.این رله را به طور مجرا به ندرت مورد استفاده قرار می دهند و در کلیدهای اتوماتیک از آنها بهمراه رله های حرارتی بهره می گیرند.
لامپ های سیگناللامپ های علامت دهنده یا لامپ های سیگنال در کلیه دستگاه های صنعتی و تابلو های توزیع و تابلو فرمان به کار میروند. نوع استفاده از این لامپ متفاوت است .این لامپ به عنوان لامپ خبر استفاده می شود و میتوان روشن بودن،خاموش بودن و یا عیب دستگاه و…را نشان دهد.چراغ های مورد استفاده در مدار فرمان ،یک چراغ کم قدرت (۲/۱تا۵وات)است که با ولتاژهای مختلف از ۲۴تا ۲۲۰ولت کار میکند.این چراغ ها معمولا در سه رنگ استاندارد قرمز،سبزو نارنجی ساخته می شوند.برای مثال در کارخانه ای که تعداد زیادی موتور در آن واحد مشغول به کار بوده و فواصل آنها تا تابلوی کنترل نسبتا زیاد باشد،از چراغ قرمزی که توسط کنتاکت بازی از کنتاکتور اصلی موتور روشن می شود استفاده می کنند.با استفاده از کنتاکتهای باز کنتاکتور می توان چراغ سبزی را که نمایشگر حالت خاموشی مدار است روشن نمود.در نقشه ها برای نمایش چراغ سیگنال از حرف h استفاده می شود.تصویر چند لامپ سگنال از جلو و ساختمان آنفیوزهادر کلیه تاسیسات الکتریکی برای جلوگیری از صدمه دیدن و معیوب شدن وسایل و نیز برای قطع کردن دستگاه های معیوب از شبکه که بر اثر عئامل مختلف از قبیل نقصان عایق بندی،ضعف استقامت الکتریکی یا مکانیکی و ازدیاد بیش از حد جریان مجاز(اتصال کوتاه)وسایل حفاظتی مختلف به کار می رود.این وسایل باید طوری انتخاب شوند که در اثر اضافه بار یا اتصال کوتاه در کوتاهترین زمان ممکن و قبل از اینکه صدمه ای به سیم ها و شبکه الکتریکی شبکه برسد،مدار قسمت معیوب را قطع کنند.یکی از این وسایل حفاظتی فیوز است فیوزها از نظر زمان قطع بر حسب منحنی ذوب سیم حرارتی داخل انها به دو نوع کند کار و تند کار تقسیم میشوند.فیوز های تند کار زمان قطع کمتری نسبت به فیوزهای کند کار دارندو به همین دلیل در مصارف روشنایی استفاده می شوند.فیوز های کند کار دارای زمان قطع طولانی تری هستنند و در نتیجه برای راه اندازی موتورهای الکتریکی به کار میروند.تحمل جریان راه اندازی موتور در حدود ۳تا ۷ برابر جریان نامی است که بر روی کلیه فیوزها جریان نامی انها نوشته شده میشود.این جریان کمتر از جریان ماکزیمیم تحمل فیوز است.فیوز در انواع فشنگی ،اتوماتیک(آلفا)،مینیاتوری،بکٌس،کاردی (تیغه ای)،شیشه ای یا کارتریج و فیوز های فشار قوی ساخته می شوند.معمولا فیوزهای که در مدار قدرت به کار میروند،مدار کنتاکتور را در مقابل اتصال کوتاه محافظت میکند؛یعنی در واقع حفاظت سیم های رابط مدار را نیز بر عهده دارد.بنابراین در مدارهایی که مثلا فیوز ۲۵ آمپری به کار می رود،ممکن است در مدار فرمان آنها از سیم یک یا یکو نیم استفاده شود.پس لازم است مدار فرمان با فیوز جداگانه ای حفاظت شود.فیوزهای اتوماتیک یا آلفا نوعی فیوز خودکار است که عبور جریان بیش از حد مجاز از آن باعث قطع مدار می شود؛اما دوباره می توان شستی آن را به داخل فشار داد تا ارتباط برقرار شود.بعضی از فیوزهای خودکار دو عمل جریان زیاد و بار زیاد در مدار کنترل می کنند؛اما پس از قطع شدن ،باید پس از مدت کمی دباره شستی مربوطه را فشار داد تا مدار وصل شود.در فیوز های اتوماتیک دو عنصر مغناطیسی و حرارتی وجود دارد که قسمت مغناطیسی آن اتصال کوتاه یا جریان زیاد و قسمت حرارتی آن (بیمتال) بار زیاد (افزایش جریان تدریجی) را قطع می کند.کلید مینیاتوری نوعی فیوز اوتوماتیک است که از نظر ساختمان داخلی با فیوز آلفا شباهت دارد و از سه قسمت رله مغناطیسی (رله جریان زیاد زمان سریع)،رله حرارتی یا رله بیمتال (رله جریان زیاد تاخیری)و کلید تشکیل شده است.این مجموعه را نیز کلید موتور مینامند.این کلیدها در دو نوع L و G ساخته شده است.نوع Lدر مصارف روشنایی به کار می رود و تند کار است(LIGHT) و نوع G در راه اندازی وسایل موتوری مورد استفاده قرار می گیرد و کند کار است. این کلید ها در انواع تک فاز دو فاز و سه فاز ساخته می شوند.کلید های محدود کننده
کلید محدود کننده(LIMIT SWITCH) که گاهی میکرو سویچ نیز نامیده می شوند،کلیدی است که برای قطع و وصل یک حرکت خطی یا دورانی و یا تعویض جهت دوران یک متحرک به کار می رود.این کلید اهرمی دارد که وقتی دسته متحرک به آن برخورد می کند کنتاکتی را قطع می نماید. کنتاکت مذبور خود عامل فرمانی است برای ماشینی که هدف کنترل آنست.چنانچه از اسم این کلید بر می اید کلید یاد شده برای محدود کردن حرکت متحرک ها به کار می رود.مثلا در یک چرثقیل سقفی که در چند جهت حرکت می کند وقتی متحرک به انتهای هر قسمت از مسیر خود میرسد،یک کلید محدود کننده مدار رفت را از کار انداخته و مدار برگشت را مهیا میسازد.مطلب مهمی که باید در کاربرد این کلید ها در نظر گرفت وضعیت کنتاکت ها در موقع وارد آمدن نیرو به اهرم آنها است.کارخانه های سازنده این وضعیت را بر حسب تعغیر طولی یا زاویه ای اهرمشخص می نمایند.انواع لیمیت سویچ ساده۱-کلید محدود کننده فشار انتهایی۲-کلید محدود کننده ای قرقرهای۳-کلی محدود کننده قرقره اییک طرفه از چپ۴-کلید محدود کننده قرقرهای یک طرفه از راست۵-کلید محدود کننده قرقر ه ای دو طرفه۶-کلید محدود کننده آنتنی دو طرفه
کلید تابع فشار(کلید های گازی)این کلید ها برای کنترل سطح گاز داخل مخازن و کمپرسورها،تنظیم فشار آب داخل لوله ها و روشن و خاموش کردن اتوماتیک این دستگاه ها مورد استفاده قرار م گیرد.عامل فرمان این کلید ،فشار گاز یا مایع داخل مخزن است.عامل قطع و وصل این کلید گاز می باشد اصول کار آن بدین صورت است که که فشار گاز موثر بر هر صفحه نیرویی معادل F=P.A ایجاد می نماید(P فشار و A سطح مقطع صفحه است).در رله ها F باعث جابه جایی صفحه می شود.این جابه جایی از طریق یک اهرم منتقل شده و کنتاکتی را قطع و وصل می نماید.نیروی برگردان را فنر زیر صفحه ایجاد می کند.پس با انتخاب فنر های مختلف می توان فشار های کم یا زیاد را بر روی صفحه اثر داده و قطع و وصل کنتاکت را بطور دلخواه تنظیم نمود.
کلید های شناور
کلید های شناور برای کنترل سطح آب یا مایهات داخل منبع ها،استخر ها و مخازن مورد استفاده قرار می گیرد.ساختمان این کلید از وزنه تعادل ،یک قسمت شناور و یک میکرو سویچ تشکیل شده است.هنگامی که قسمت شناور را تنظیم می کنند با تغیر سطح مایع داخل مخزن شناور تغیر مکان داده به میکرو سویچ داخل کلید فرمان می دهد و باعث قطع و وصل مدار می شود.
چشم های الکتریکی(سنسورها)
این کلید نوعی کلید فرمان دهنده است که بدون برخورد فیزیکی با دست یا هر وسیله دیگری توسط سیستم چشم الکتریکی از فاصله حداقل یک میلی متر و حداکثر۸متر واکنش نشان میدهد و فرمان صادر می کند همچنین به وسیله رله ای که در داخل آن به کار رفته ،کنتاکت های را باز می کند یا می بندد و در نتیجه به دستگا ه های مورد نظر فرمان میدهد.از این کلید در دستگاه های صنعتی و خطوط تولید استفاده فراوان می شود.
رله زمانی (تایمر)و انواع آنیکی از وسایل فرمان دهنده مدار های کنترل اتوماتیک ،تایمر ها یا رله های زمانی هستنند که وظیفه کنترل مدار را برای مدت زمان معینی بر عهده دارند.اصول کار رله ها همانند کنتاکتور ها است با این تفاوت که در رله ها:۱-تمام کنتاکت ها از لحاظ فرم ظاهری شبیه هم هستنند و در مدار های فرمان شرکت می کنند .۲-کنتاکت ها بنا به مقتضیات کار ممکن است به طور لحظه ای یا با تاخیر زمانی قطع و وصل شوند . در این صورت نام رله ،رله لحظه ای یا رله با تاخیر زمانی خواهد بود.۳-رله ها همچنین ممکن است دارای کنتاکت های لحظه ای یا با تاخیر زمانی باشند.البته منظور از تاخیر زمانی فاصله زمانی است که بین عمل کنتاکت (اعم از باز شدن یا بسته شدن) از لحظه اتصال سیم پیچ رله به ولتاژ به وجود می آید.تا کنون در صنعت برق رله های زیادی ساخته شده اند که مشخصات مختلفی داشته و هر یک برای کار بخصوصی مورد استفاده قرار می گیرند.برای مثال در انتقال انرژی و حفاظت خطوط ،از یک رله خاص استفاده می کنند.یک جور رله دیگر که مشخصات بخصوص دیگری دارد در صنعت نساجی و رله دیگر در جای دیگر….من چند رله را برای دوستان معرفی می کنم که از مشهورترین و پر کاربد ترین رله ها هستنند البته اگر دوستان می توانند رله های دیگری را معرفی کنند خیلی خوب میشه۱-رله زمانی موتوری یا الکترو مکانیکیاین رله بر اساس ساعتی کار میکند که محرک چرخ دنده های آن موتور آسنکرو سنکرو و بیشتر موتور با قطب چاکدار است می باشد.اصول کار آن به این صورت است که دور موتور توسط یک سیستم چرخ دنده کاهش می یابد بطوری که در نهایت ،آخرین چرخ دنده کنتاکت را خیلی به آرامی با یا بسته می کند. زمان شروع رله از لحظه راه اندازی موتور محسوب می شود.توسط این رله می توان زمان هایی از حدود ثانیه تا حدود ساعت ،و حتی روز و هفته تنظیم نمود.محل دیسک در لحظه شروع به کار ،قابل تنظیم است و پس از تنظیم زمان آن (توسط زایده خارجی) و تغذیه تایمر ،موتور با دور ثابت به حرکت در می آید و با گردش موتور ،زمان تایمر شروع می شود. پس از گردش ،به علت برخورد با زایده دیسک ،متوقف می شود و به میکرو سویچ داخلی فرمان می دهد و کنتاکت های تایمر عمل می کنند و به طور اتوماتیک قطع می شوند و موتور یا هر وسیلهء دیگر از کار می افتد.البته رله های جدیدی است که هنگام عمل کنتاکت بازی را بسته و کنتاکت بسته ای را باز می کند و می توان موتوری را خاموش یا روشن کرد یا نیرو را از مو توری به موتور دیگر انتقال داد .۲-رله زمانی الکترونیکیاز تایمر های الکترونیکی برای تنظیم زمان های کمتر از ثانیه تا چندین ثانیه استفاده می شود. در ساختمان این تایمر ها ،از مدار ها و اجزای الکترونیکی استفاده می شود.در در نوعی از این تایمر ها با شارژ و دشارژ شدن یک خازن بوبین یک رله کوچک تحریک می شود. اصول ساختمان رله الکترونیکی بر مبنای مدار RC (خازن و مقاومت)و بر حسب تاخیر زمانی استوار است .تنظیم این نوع تایمر ها بستگی به مقاومت سر راه خازن دارد.در ساده ترین نوع تایمر الکترونیکی در تایمر نوع خازنی ،رله هنگامی وصل می شود که خازن شارژ بشود و ولتاژ دوسر آن برابر ولتاژ وصل رله گردد.پس از وصل رله ،با ذخیره شدن در خازن روی مقاومتی که توسط کنتاکت باز رله به دو سر خازن وصل می شود تخلیه می گردد.در این نوع با تعغیر ظرفیت خازن می توان زمان تایمر را تنظیم کرد.۳-رله زمانی نیو ماتیکیدر این رله ا خاصیت ذخیره سازی و فشردگی هوا استفاده می شود .به این ترتیب که رله هنگام رها شدن،خیلی راحت رها می شود.وقتی که بوبین تحریک قسمت متحرک را جذب می کند ،اهرم،قطعه ای را که به شکل دم آهنگری است فشار خواهد داد .هوای دم از طیق سوپاپ یک طرفه خارج می شود. وقتی که بوبین از تحریک خارج می شود ،فنر دم را منبسط می کند .دم از طریق سوپاپ تنظیم ،از هوا پر می شود.سرعت انبساط دم در رابطه با پیچ تنظیم تفاوت می کند وقتی که دم به حالت عادی برگشت ،کنتاکت ها عمل می کنند.بنابراین به وسیله تنظیم کردن پیچ تنظیم ،عمل کردن کنتاکت ها را می توان تعقیر داد.کار این زمان سنج شبیه تایمر موتوری است ؛با این تفاوت که زمان سنج موتوری پس از تنظیم و وصل بوبین آن به ولتاژ شروع به کار می کند،ولی زمان سنج نیو ماتیکی پس از قطع بوبین آن از ولتاژ شروع به کار می کند.۴-رله زمانی بی متال یا حرارتی (تایمر حرارتی)این نوع تایمر با استفاده از خاصیت بی متال کار می کند و در انواع رله ذوب شونده ،رله حرارتی بی متال و رله حرارتی منعکس کننده میله ای ساخته می شوند.زمانی که جریان از بی متال عبور می کند گرم میشود و پس از مدتی در اثر تعقیر شکل عمل کرد مدار را قطع یا وصل میکند.دقت این نوع تایمر زیاد نیست و آب و هوای محیط بر روی آن اثر می گذارد به طور کلی می توان رله های زمانی را به دو دسته تقسیم کرد:الف-رله های تاخیر در وصل(ON-DELAY) :به رله ای گفته می شود که باید به رله انرژی داده شود و سپس رله عمل کرده کنتاکتی را باز یا بسته کند؛مثل رله زمانی موتوری.ب-رله تاخیر در قطع(OFF-DELAY) :به رله ای گفته می شود که بعد از قطع شدن انرژی عمل کرده کنتاکتی را باز یا بسته کند؛مثل رله نیو ماتیکی.۵-رله زمانی هیدرو لیکیدر این رله ها از سیستم هیدرو لیکی جهت تاخیر در مدار استفاده می شود. طرز کار آن طوری است که وقتی جریان برق به رله وصل می شود ،مقداری روغن در داخل آن جابهجا می شود.برای بازگشت روغن به مکان اولیه زمانی لازم است که این زمان را به عنوان زمان تایمر در نظر میگیرند.این رله ها را در مدارهای مختلف به کار می برند.اگر کسی از دوستان توضیح بیشتری در ارتباط با این رله دارد لطفا ارائه بده تا مطالب کامل تر شود.
ترموستاتترموستات نوعی رله حرارتی است که در مقابل حرارت محیط حساس بوده و عمل میکند.این وسیله در دستگاه های مختلف صنعتی کاربرد فراوان دارد و وظیفه تعادل حرارتی دستگاه را بر عهده دارد.در صورتی که درجه حرارت از حد تنظیمی فراتر رود ،کلید عمل کرده یک کنتاکت باز را می بندد و یا کنتاکت بسته ای را باز می کند.از ترموستات بیشتر در وسایل حرارتی و برودتی مانند شوفاژ،یخچال،و چیلر استفاده می شود.
کلیدهای تابع دور(گریز از مرکز)
کلید های تابع دور در بعضی الکترو موتورهای یک فاز جهت خارج کردن سیم پیچ کمکی از مدار و در موارد دیگر مانند ترمز جریان مخالف به کار می رود.ساختمان آنها از یک محور و دو وزنه تشکیل شده که به وسیله یک طوق و یک فنر حول محور حرکت می کند و با زیاد و کم شدن سرعت موتور یا وسیله چرخنده ،وزنه های دو طرف به محور نزدیک یا دور می شود ؛به این ترتیب طوق روی محور حرکت می کند و باعث قطع و وصل کلید می شود

لامپ LED در نمای ساختمان

لامپ LED در نمای ساختمان

LED-Circuits1

اخیرا لامپهای LED بر روی صفحات فلزی نازک و قابل انعطاف مونتاژ میشوند که جهت نور پردازی نمای ساختمان ها بکار میروند این صفحات فلزی پارچه مانند، دارای LED هایی با قابلیت تنظیم میزان روشنایی در یک منطقه خاص از نمای ساختمان یا کل نما  ونورپردازی های های جالب و با سبک دلخواه می باشند که در مقایسه با سیستم های روشنایی معمولی دارای طیف وسیعی از انتخاب ها ، رزولوشن بالاتر،دارای مقاومت در برابر هر نوع آب و هوا و درجه حرارت مختلف است که با سیستم های کامپیوتری قابل کنترل می باشد.

خصوصیات این صفحات عبارتند از :
– دوام
– انعطاف پذیری
– سبکی
– بهره وری  از انرژی
– شفافیت
– قابلیت استفاده مجدد
– LED برای نورپردازی
– ضد آب بودن
مشخصات فنی آن عبارتند از:
– نوع: انعطاف پذیر
– وزن: ۱٫۳۰ پوند / فوت مربع
– ضخامت اسمی: ۰٫۲۴۴ ”
– حداکثر عرض: ۲۶ ‘
– حداکثر طول: ۸۰ ‘
– عمودی LED: 1.3 – 13 ‘
– افقی LED: 4 ”
-قابلیت کنترل از را دور با وسعت پوشش بالا

تعدادی از تجهیزات خانه هوشمند

تعدادی از تجهیزات خانه هوشمند

smart-home

 

عصر خانۀ هوشمند فرارسیده است. اینترنت به تدریج راه خود را به همه چیز یافته است، از لوازم خانگی گرفته تا ترموستات و به زودی قادر خواهید بود که اکثر وسایل خانۀتان را با گوشیتان کنترل کنید.

اما اجازۀ ورود لوازم متصل به وای‌فای را به منزل دادن، گام بزرگی است؛ آنها می‌توانند در همۀ اوقات شما را تحت نظر بگیرند و جزییات بسیاری از شخصی‌ترین مسائلتان را ثبت کنند. بنابراین ارزشش را دارد که چیزهایی بخرید که به آنها اعتماد و اعتقاد دارید.

بعضی از گجت‌های خانه‌های هوشمندی که در بازار هستند، می‌توانند قدری پیچیده باشند و عملاً بی‌استفاده. اما برخی دیگر از این محصولات با زندگی عادی شما عجین می‌شوند و کارها را برایتان آسانتر و هوشمندانه‌تر می‌کنند.

در زیر با کاربردی‌ترین و ایمن‌ترین گجت‌های خانه‌های هوشمند آشنا می‌شوید:

تشخیص‌دهندۀ دود Nest

این تشخیص‌دهندۀ دود می‌تواند با شما صحبت کند و اگر مشکلی باشد به شما خبر دهید. همچنین هشدارهای آن با استفاده از گوشی تلفن همراه قابل مشاهده و کنترل هستند. این گجت هوشمند است و می‌توان در حد که تشخیص دهندۀ دود و مونواکسید کربن معمولی به آن اتکا کرد.

استارتر کیت Philips Hue

لامپهای فیلیپس هیو با استفاده از برنامۀ گوشی قابل روشن و خاموش کردن هستند. می‌توانید رنگ و روشنایی آنها را تنظیم کنید و همچنین آنها را با برنامه‌های دیگر گوشی سینک کنید تا اگر برای مثال پیامی برای شما بیاید، لامپ چشمک بزند. با این استارتر کیت امکان کنترل همزمان ۵۰ لامپ را خواهید داشت.

ترموستات Nest

این ترموستات متوجه می‌شود که چه زمانی دوست داریم خانه گرم یا سرد باشد و بر این اساس گرمایش را تنظیم می‌کند. اگر تشخیص ترموستات هوشمند را دوست نداشتید، می‌توانید آن را با استفاده از یک برنامۀ گوشی تنظیم کنید.

سیستم امنیتی Canary

کاناری از ایدۀ اتصال همۀ دستگاه‌های هوشمند شما به هم استفاده کرده و سیستم امنیتی‌ای ایجاد کرده که قابلیتهای بسیاری دارد. نصب آن بسیار آسان است و می‌تواند خانۀ شما را تحت نظر بگیرد. مراقب ورود دزدها باشد و ویدیوی هر گونه فعالیت غیرمعمول را برای شما بفرستد. همچنین دما و کیفیت هوای منزل را هم کنترل می‌کند.

کلید Belkin WeMo

کلیدهای برقی هوشمند اساس ساده‌ای دارند؛ اما می‌توان آنها را به هر چیزی متصل کرد تا قابلیت اینترنتی پیدا کنند. با اتصال لامپ به آن می‌توانید آن را با استفاده از اینترنت روشن و خاموش کنید. همچنین می‌‌توانید سرویس‌های دیگر نظیر ترموستات یا موقعیت‌یاب گوشیتان را به آن متصل کنید، تا هنگام ورودتان به منزل چراغها روشن و هنگام خروج ورودتان چراغها خاموش شوند.

ایستگاه هواشناسی Netatmo

ایستگاه هواشناسی Netatmo به صورت پیوسته اطلاعات به روز در مورد هوای اطراف منزلتان به شما می‌دهد. اطلاعاتی نظیر شدت باد و باران. بنابراین می‌توانید حتی از راه دور با استفاده از برنامۀ گوشیتان به صورت فوق العاده دقیق از وضعیت آب و هوای اطراف منزلتان آگاه شوید.

iKettel

یک کتری متصل به اینترنت شاید خیلی ضرور نباشد، اما داشتن آن به این معنی است که می‌توانید پیش از رسیدن به آشپزخانه آب جوش مورد نیاز چای را آماده داشته باشید. می‌توان آن را با استفاده از برنامۀ گوشی روشن کرد و همچنین آن را تنظیم کرد تا وقتی که بیدار شدید آب را جوش آورده باشد.

Logi Circle

این گردالوی قابل جابه‌جایی را در اتاقی که می‌خواهید تحت نظر بگیرید بگذارید. سپس با استفاده از برنامۀ مخصوص با استفاده از گوشی می‌توانید وارد شوید و به صورت زنده وضعیت اتاق را ببینید.

قفل هوشمند بدون کلید Yale

اگر سیستم خانۀ هوشمندی نظیر آنچه که سامسونگ می‌سازد داشته باشید، با استفاده از این قفل می‌توانید به وسیلۀ گوشیتان درها را باز کنید. اگر نه، می‌توانید برای اعضای خانواده قفل عددی بگذارید یا آن را طوری تنظیم کنید که با کارت باز شود.

 

افزایش ارتفاع دکل برق بدون خاموشی

افزایش ارتفاع دکل برق بدون خاموشی

۱۰۰۸۶۴۳۰۸۴۵۳

به منظور پاسخگویی به رشد روزافزون تقاضا برایانرژی برق، معمولا سعی می کنند که ظرفیت شبکه را برای انتقال برق افزایش دهند . یکراه حل استفاده از حداکثر مجاز دمای هادی، طبق استانداردهای بین المللی می باشد. کهدر نتیجه موجب افزایش شکم سیم (sag) می شود . همچنین بدلیل تلاقی مسیر راه آهن وجاده ها با مسیر خطوط انتقال و یا لزوم افزایش قدرت انتقالی خط ، نیاز به افزایشارتفاع دکلهای خط میباشد. روشهای معمول برای این کار مستلزم ایجاد خاموشی در شبکهمربوطه است که در بسیاری اوقات این امر ممکن نیست.شرکت ABB Energieanlagenbau GmbH ، روشی جدید راابداع نموده تا خطوط ۱۱۰ کیلوولت انتقال را بدون خاموشی، تغییر ارتفاعدهدشیوه های معمول برای افزایش ارتفاع دکلها، نه سادههستند و نه از نظر مالی به صرفه. برای مثال، تمام آنها نیاز به خاموش کردن خط وجابجا کردن هادیها از محل اتصالشان را دارند. در حالیکه در روش جدید ABB ، شبکه میتواند در هنگام عملیات، برقدار باشد و کار عادی خود را ادامه دهددر روشهای مرسوم، جرثقیل های متحرک باید به محلدکل آورده شوند که بدلیل شرایط مکانی دکل، مانند زمینهای کوهستانی، بعضا امکان پذیرنیست. برای حل این مساله، پیش از این از جین پل (JIN POLE) برای جابجا کردن قطعاتدکل استفاده می شد که باز هم نیاز به جدا کردن هادیها بود و برای محافظت از هادیهادر حالت جدا شده، نیاز به ایجاد ساختارهای جدید بود. درضمن، جدا کردن هادیها،مستلزم استفاده از مسیرهای جانبی یا موقت برای انتقال انرژی می باشدمشکلات فوق، شرکت ABB را برآن داشت تا شیوه جدیدیرا معرفی کند. ابتدا این روش روی یک دکل منفرد که در مدار نبود، امتحان شد. پس ازبهینه کردن سیستم مذکور در نتیجه آزمایش فوق، امکان افزایش ارتفاع دکلهای خطوطانتقال، بدون خاموشی و با امنیت کامل و در صعب العبورترین مناطق امکان پذیرشدلوازم و تجهیزات مورد نیاز برای بلند کردن دکل ها،از چهار نگهدارنده مشبک تشکیل شده است که طول هرکدام می تواند مستقلا تغییر یابد تادر شیب ها بتوان ارتفاع آنها را در یک سطح نگه داشت. هر کدام از نگهدارنده ها روییک فونداسیون فلزی قرار می گیرند و ابتدا روی زمین، با رعایت حریم خط، به شکل پیشساخته آماده می شوند . سپس این نگهدارنده ها توسط وینچ روی محور دکل مورد نظر بالاکشیده شده و سپس در جای خود محکم می شوند . فونداسیون های فلزی ، چهار نگهدارنده رادر دو سطح مختلف به همدیگر متصل می کنند .چهار نگهدارنده مذکور، توسط چهار کابل بهفونداسیون دکل (از داخل و یا خارج) مهار می شوند بدنه دکل، با اتصالات پایهمحکم شده و در موقعیت خود ثابت می شود. در گوشه های بدنه دکل اتصالات خاصی متصل میکنند که از این اتصالات به عنوان محل شروع عملیات استفاده می شود قسمت بالای دکل بامجموعه ای از کابلها کشیده می شود تا بالا بردن دکل، تحت کنترل قرار گیرد بدلیلمهار دو طرفه ، مهار اضافی خارجی دیگری مورد نیاز نمی باشد. دکل بوسیله چهار قلاببالابر که توسط چهار سیلندر هیدرولیک به حرکت در می آیند، بالا کشیده می شود. بدنهدکل با قابی که محکم کننده آن نیز هست، هدایت می شود. اگر دکل در هنگامعملیات به هر دلیل، مانند وزش باد یا کشش قطری هادیها، از موقعیت عمودی خود منحرفشود، تجهیزات بخصوصی برای بازگرداندن آن به موقعیت اصلی خود مورد استفاده قرار میگیردبه طور کلی، بلندکردن قسمت فوقانی دکل به ارتفاعمورد نظر، حدود سی دقیقه به طول می انجامد در طول این مدت، کسی مجاز به حضور درمحدوده خطرناک اطراف دکل یا خطوط انتقال نمی باشدسنسورهای نصب شده در چهار گوشه سازه نیروهایاعمالی را اندازه گیری می کند و مقادیر آن، در نمایشگری دیجیتالی در مرکز کنترلخارج از محدوده خطر خوانده شده و اگر انحرافی از خط عمود در دکل دیده شود، می تواناز همین مرکز کنترل و توسط سیلندرهای هیدرولیک، آن را تصحیح نمودزمانی که دکل به ارتفاع مورد نظر رسید، می توانقسمت جدید را به ساختار دکل اضافه نمود، یا قسمت پایینی را بیرون آورده و قطعهبلندتری را بجای آن نصب نمود. روش شرح داده شده در حال حاضر برای تمامی انواعدکلهای خطوط انتقال تا سطح ولتاژ ۱۱۰ کیلوولت و در هر منطقه ای قابل اجراست. افزایشارتفاع تا هفت متر، بسته به محل اتصالات، امکان پذیر است. با لوازم بالابر کنونی،وزنی برابر ۱۵ تن قابل بلند کردن است. در صورت نیاز، این مقدار قابل افزایشاستپروژه انجام شدهیک نمونه پروژه که برای راه آهن آلمان در مسیر بینشهری کارلسروهه – افنبورگ – باسل انجام گرفته، مزایای این روش جدید را مشخص می کند. اکثر دکلهای خط انتقال ۱۱۰ کیلوولت مذکور در مناطق صعب العبور واقع شده اند. در یکمورد، یکی از دکلها تا سه متر باید افزایش ارتفاع پیدا می کرد و در محلی واقع بودکه جرثقیل های متحرک به آن دسترسی نداشتند . از طرفی، شرایط نامناسب زمین، امکانمحکم کردن پایه های تجهیزات سنگین را بسیار مشکل می کرد. بنابراین گروه ABB باوسایل نسبتا سبکتر خود به محل مورد نظر رفتند و در مدت دو و نیم روز، طبق برنامه وبدون ایجاد خاموشی در خط، عملیات مرتفع سازی دکلها را انجام دادند. برنامه بعدی اینشرکت انجام عملیات فوق برای خطوط انتقال ۳۸۰/۲۲۰ کیلوولت میباشد.

حفاظت کاتدیک(انواع)

حفاظت کاتدیک(انواع)

download (3)

تصمیم گیری جهت استفاده از سیستم اعمال جریان و آند فدا شونده بر اساس ملاحظات اقتصادی و عملی بودن سیستم انجام می شود. چنانچه جریان کل حفاظت کمتر از A2 باشد از روش آند فداشونده، و در آمپرهای بالاتر از روش اعمال جریان استفاده می شود. چنانچه استفاده از روش اعمال جریان برای بعضی سیستمها (مثل مبدل های حرارتی متصل به سازه های فلزی دیگر) مشکل آفرین باشد استفاده از آندهای فدا شونده ارجح است. عوامل مهم دیگری که در انتخاب نوع سیستم حفاظت کاتدی تأثیر دارند که در جدول ذیل به مقایسه آنها با یکدیگر در هر کدام از دو روش حفاظت می پردازیم:

 

روش استفاده

از آندهای فدا شونده

روش اعمال جریان

(Impressed Current )

۱

در صورت وجود جریانهای سرگردان برروی سازه ودامنه تغییرات وسیع پتانسیل در سازه امکان استفاده ار این سیستم وجود ندارد.

در صورت ایجاد جریانات سرگردان برروی تاسیسات مجاور استفاده از این روش ناممکن است.

۲

به هیچ نوع منبع انرژی الکتریکی احتیاج ندارد.

حتما به یک منبع تولید انرژی الکتریکی احتیاج دارد.

۳

به فضای زیادی جهت نصب سیستم نیاز ندارد.

به فضای زیادی جهت نصب سیستم نیاز دارد.

۴

هزینه های عملیاتی در طول عمر سیستم ناچیز است.

هزینه های عملیاتی تامین برق،تعمیرات ترانس ویکسوساز،کابلها و…وجود دارد.

۵

میزان جریان خروجی جهت حفاظت تاسیسات کم است.

با هر میزان ولتاژوجریان در خروجی قابل طراحی است.

۶

در مقاومتهای بالای خاک قابل اعمال نمی باشدوتنهادر آب وخاک با مقاومت پایین می تواند تاسیسات فلزی را محافظت نماید.

کاربرد این سیستم توسط مقاومت مخصوص خاک یا آب کمتر محدود می گردد.

۷

در سازه های بزرگ به تعداد زیادی آند وحفر گودالهای زیادی برای دفن آنها نیازمند است که معمولا مقرون به صرفه نمی باشد.

برای حفاظت سازه های بزرگ به تعداد کمی آند نیازمند است.

۸

بعلت خروجی جریانی پایین تاثیر منفی بر تاسیسات مجاور ندارد.

ممکن است تاثیر منفی بر تاسیسات مجاور بستر آندی داشته ونیاز به اصلاح سیستم باشد.

۹

جریان خروجی قابل کنترل وتنظیم نمی باشد.اما پس ازمدتی خود به خود تنظیم می گردد وبا پلاریزاسیون سیستم مقدارجریان ؟آندی آند قربانی کاهش می یابد.

گرچه جریان خروجی قابل کنترل است امادرصورت هرگونه تغییر در شرایط امکان صدمه زدن به رنگ وپوشش وجوددارد.

۱۰

در کانالهای آب می توانند سد معبر کرده وباعث ایجاد جریانهای آشفته در سیال گردد.

آند های مورد استفاده در این روش با حجم کم ساخته شده ولذا فضای زیادی اشغال نمی کنند.

۱۱

آندها مستقیما برروی سازه با جوشکاری وپیچ ومهره قابل نصبند بنابراین نیاز به سوراخکاری سطح سازه های مثل کشتی ویا دیواره مخازن نمی باشد

آندها مستقیما برروی سازه  قابل نصب نیستند.

۱۲

امکان اشتباه در نصب وپلاریته معکوس وجود ندارد

امکان اشتباه در نصب با پلاریته معکوس وجود ندارد که این امر موجب تشدید خوردگی می گردد.

در هنگام صاعقه چه باید کرد

در هنگام صاعقه چه باید کرد

thEK1XZR7M

در اثر برخورد ذرات آب یک جبهه هوای گرم به ذرات یخ یک جبهه هوای سرد ، الکتریسته ساکن بوجود می آید که نسبت به زمین دارای بارالکتریکی منفی بوده و در صورتی که فاصله منبع جریان الکتریکی نسبتاً‌نزدیک به سطح زمین باشد ، صاعقه بروز می کند . در رعد و برقهای شدید معمولاً‌بیشترین تخلیه الکتریکی صورت می گیرد .
رعد و برق قادر است صدماتی جدی وارد آورد، می‎تواند به راحتی انسان و یا حیوان را از پای درآورد، زیرا از جریان الکتریکی بسیار بالایی برخوردار است که مدت آن کم بوده ولی قدرت آن زیاد است.

براساس مطالعات و بررسی‎های به عمل آمده توسط متخصصین امر تعداد رعد و برق در هر لحظه در سراسر دنیا بین ۱۵۰۰ تا ۲۰۰۰ بار می‎باشد. به عبارت دیگر حدود ۶۰۰۰ جرقه الکتریکی در هر دقیقه در دنیا زده می‎شود. شدت جریان الکتریکی در رعد و برق ممکن است بین ۱۰۰۰۰ تا ۴۰۰۰۰ آمپر باشد (درحالی که حداکثر شدت جریان قابل تحمل معمولاً ازچند صد آمپر تجاوز نمی‎کند).
تخلیه بار الکتریکی که از یک ابر به ابر دیگر و یا به زمین بوجود می ‎آید، می‎تواند قلب انسان را از کار بیاندازد، شش‎ها را پاره کند و یا سبب سوختگی‎های جدی در بدن شود. هوایی که نور برق از میان آن می‎گذرد به شدت گرم می‎شود. جریان الکتریکی شدید میزان حرارت هوا را در کانالی که برق از آن عبور می‎کند برای مدت یک میلی‌ثانیه از ۳۰۰۰۰ درجه سانتیگراد بالاتر می‎برد.
هوایی که به طور ناگهانی این میزان گرم می‎شود به سرعت منبسط شده و ضربه‎ای به هوای اطراف می‎زند و امواجی را با فشار بین ۱۰ تا ۳۰ اتمسفر بوجود می‎آورد. اغلب فلزاتی که به عنوان وسایل زینتی به کار می‎روند مانند گردنبند و دست بند نیز می‎توان هنگام رعد و برق خطرناک باشند. در موقعی که رعد و برق شدید رخ می‎دهد بهترین کار برای حفظ سلامتی این است که هر نوع وسیله فلزی که در دست دارید را فوراً رها کنید و از ریسک کردن بپرهیزید.
رعد و برق چرا به صورت خط راست نیست ؟
رعد و صاعقه در اثر تخلیه در ابرها ایجاد می‌شود . اگر این تخلیه بین دو ابر باشد آذرخش یا برق و اگر بین زمین باشد صاعقه نامیده می‌شود . ابرها هنگام حرکت دارای بارهای الکتریکی مثبت و منفی می‌شوند و به دنبال مکانی می گردند که بار الکتریکی خود را تخلیه کنند در مسیر به ساختمان های بلند و یا درختان بلند و یا جاهای نوک تیز که تجمع بار الکتریکی بیشتر است می رسند و تخلیه بار را انجام می‌دهند تا به زمین برسند .
از آنجا که ابرهای باردار در مسیر یکسان محل تخلیه بار را پیدا نمی‌کنند بنابراین تا وقتی که همه بار الکتریکی خود را از دست نداده اند کاملا به زمین نمی رسند و بالا می روند . بنابراین به صورت شاخه ای دیده می‌شوند .
از طرفی هنگامی که ابرها بالا هستند . در اثر برخورد و تابش های فرابنفش (تغییرات حوی) باردار می‌شوند و مقاومت هوا را که عایق است می شکنند و در نتیجه ها رسانا می‌شود و سپس تخلیه الکتریکی صورت می گیرد که ممکن است این تخلیه بین دو ابر یا ابر و زمین باشد .
مقاومت هوا در قسمت های مختلف متفاوت است مثلا در بعضی نقاط رطوبت هوا کمتر و در بعضی نقاط دیگر بیشتر می باشد و یا عوامل دیگر که باعث تغییر این مقاومت می‌شوند در نتیجه انتشار جریان الکتریکی به صورت مستقیم نیست و کنگره ای می‌شود .

آمارها می گوید بیشترین خسارت ناشی از ناآگاهی مردم است .
براساس آمار درسال ۱۹۹۳از خسارتهای طبیعی ناشی از طوفان ، آتش سوزی ، دزدی و غیره ۳۴٪ مربوط به صاعقه و اثرات ثانویه آن بوده است.
شاید ساده ترین دلیل این حوادث عدم آگاهی از روشهای صحیح حفاظت باشد. مضافاً به اینکه همه به غلط تصور می کنند که داشتن یک صاعقه گیر نوع میله ای در خارج ساختمان [که تنها از وقوع جرقه وتخرب فیزیکی ساختمان جلوگیری می کند] می تواند ،کلیه تجهیزات برقی والکترونیکی داخل ساختمان رانیز حفاظت نماید.
در صورتیکه چنین نیست . و اما امروزه تکنولوژی به کمک آمده و تجهیزاتی طراحی وابداع شده است که بتواند حفاظت مناسب را بوجود آورد. و در مقالات بعد جهت تکمیل این مقاله به حفاظت کنندهای خط تغذیه دستگاههای الکتریکی وتجهیزات حفاظتی DEHN خواهیم پرداخت.
صاعقه یکی ازاسرار آمیزترین پدیدههای خلقت است، که در عین زیبایی بسیار مخرب ودرطول تاریخ زندگی انسان ، موجب ضرر وزیان مالی وجانی بسیاری شده است. صاعقه از تخلیه الکترواستاتیکی میان ابر وزمین بوجود می آید.

در ابرهایی از نوع کومولونیمبوس (که گاه تا ۱۸km ارتفاع وچندین کیلو متر عرض دارند)طی مراحلی،ذرات آب دارای بار مثبت شده بطوریکه بارهای منفی درلایه های زیرین وبارهای مثبت در بخشهای فوقانی ابر متمر کزمی شوند. دراین حالت بارهای مثبت سطح زمین نیز،در زیر سایه ابر مجتمع می گردند.با افزایش پتانسل الکتریکی ابرنسبت به زمین یک جریان پیشرواز الکترونها با حرکتی نردبانی شکل از ابر به سوی زمین(downward leader) سرازیر شده وکانال اولیه صاعقه راشکل می دهد.
هوای اطراف این کانال کاملاٌ یونیزه است.این پیکان که گاه طول شاخه های آن به ۵۰m می رسد،بار زیادی را در نوک پیکان با خود حمل کرده وموجب افزایش شدت میدان الکتریکی جووشکست مقاومت عایقی هوا می شود.دراین حالت سرعت حرکت کانال نزدیک شونده به زمین بیش از۳۰۰km/sمی باشد.دراین زمان با افزایش شدت میدان الکتریکی در سطح زمین،یک جریان الکتریکی بالا رونده(upward leader )نیز از زمین به سوی ابر پیش می رود. پس از اصابت این دو پیکان به یکدیگر،کانال جریان بسته شده وضربه اصلی صاعقه ((return strokeاتفاق می افتد،و بدین ترتیب جهت خنثی شدن بارهای ابر وزمین،جریان بسیار زیادی در مدت کوتاهی در این کانال برقرار می شود.صاعقه در انواع مختلف اتفاق می افتد که متداولترین آنها((%۹۰از نوع صاعقه منفی نزولی وخطرناکترین آنها نوع مثبت صعودی می باشد.
صدمات صاعقه
اصولاٌ بشر تا قبل از تجربه شخصی حدوث سانحه، کمتر به دنبال علت وقوع آنها بوده است اما خسارات زیاد ومکرر ناشی از اثرات اولیه (ضربه های مستقیم)و ثانویه (میدانهای الکترومغناطیسی)صاعقه امروز به حدی رسیده است که توجه وراهکارهای جدی را می طلبد.

شاید اولین دلیل بروز این حوادث،عدم آگاهی از روشهای صحیح حفاظت باشد،که داشتن یک صاعقه گیردر خارج ساختمان(که تنها از وقوع جرقه وتخریب فیزیکی ساختمان جلوی گیری می کند) می تواند کلیه تجهیزات برقی والکترونیکی داخل ساختمان را نیز حفاظت نماید ، در صورتی که چنین نیست.طی ده سال گذشته استانداردهای جهانی به ما این امکان را داده اند که طراحیهای مناسبی با رعایت اصول وقوانین ( ElectroMagnetic Compatibilty ( EMC انجام دهیم.
امروزه وسایل وتجهیزاتی که برای یک زندگی ساده تدارک دیده شده،پر از مدارهای الکترونیکی است. وسایل خانگی،کامپییوتر،فاکس،بیسی م،تلویزیون ،تلفن،شبکه های اطلاعاتی جهانی ،همه وهمه از مدارهای الکترونیکی ساخته شده اندکه گران بوده وتعمیراتشان نیز آسان نیست وگاهی از خط خارج شدن آنها مصادف با خسارتهای غیر قابل جبرانی می باشد.
عواملی که می توانند شدید اٌتجهیزات نامبرده بالا یا بطور کلی هر وسیله دیگری را که مدارهای الکترونیکی در آنها بکار رفته باشد به خطر انداخته یاغیر قابل استفاده کنند، عبارتند از :
· اضافه ولتاژهای ناشی از تخلیه های الکترواستاتیک(Electrostatic Discharge)
· اضافه ولتاژهای ناشی از قطع ووصل مدارات جریان(Switching Electromagnetic Pulse)
· اضافه ولتاژهای ناشی از ضربه های مستقیم صاعقه ومیدانهای الکترومغناطیسی آن(Lightning- Electromagnetic ulse)
صاعقه از سه طریق می تواند موجب بروز اضافه ولتاژ در سیستم های الکتریکی شود:
۱ -کوپلاژمقاومتی:
وقتی که صاعقه به ساختمانی ضربه می زندجریانی که به زمین تخلیه می شودپتانسیل زمین رادر سیستم های برق ودیتا،تا چند صد کیلوولت افزایش می دهد.این امر موجب می شود بخشی از جریان صاعقه ازطریق هادیهای ورودی –خروجی به ساختمانهای دیگرمنتقل شود.
۲- کوپلاژسلفی:
عبورصاعقه ازیک هادی ویا کانال تخلیه، خود ایجاد یک میدان شدید مغناطیسی می نماید. وقتی که خطوط میدان،هادیهای را که تشکیل لوپ داده اند قطع کند،در آنها ولتاژی معادل چند کیلوولت القاء می شود.
۳- کوپلاژ خازنی:
کانال صاعقه در نزدیکی نقطه تخلیه،یک میدان شدید الکتریکی ایجاد می کند।کابلها وهادیها مانند خازن وهوانیز عایق دی الکتریک آنهاست. بدینصورت علیرغم عدم برخورد صاعقه به ساختمان کابلها تحت یک ولتاژ بالا قرار میگیرد.

اصول حفاظت از صاعقه
حفاظت یک ساختمان بطور کامل شامل موارد زیر است:

۲-حفاظت داخلی و تجهیزات نصب شده داخل ساختمان در مقابل آثار ثانویه صاعقه ۱-حفاظت جلد خارجی ساختمان از ضربه های مستقیم صاعقه
۱-حفاظت جلد خارجی ساختمان
منظوراز حفاظت خارجی ،حفظ بدنه واستراکچر ساختمان از آتش سوزی وانهدام در اثر اصابت صاعقه است. کلیه تجهیزات(مانند برقگیر) که جهت جذب وهدایت صاعقه از پشت بام تا سیستم زمین نصب می شوند،طبق استانداردIEC -61024 شناسایی می گردند.

توسعه کاربرد سیستم های الکتریکی در جهان ،موجب افزایش شدید آمار صدمات وارده به این دستگاهها در اثرصاعقه و اضافه ولتاژهای ناشی از آن شده است।لازم به ذکر است که تنها بخشی از اضافه ولتاژها دراثر صاعقه بوده وبخش عمده آنها ناشی از عملیات سوئیچینگ وحوادث تغذیه می باشند.برای این بخش از حفاظت،کاهش اثر میدانهای الکترومغناطیسی ناشی از صاعقه مد نظر قرار می گیرد.
پس از بر خورد صاعقه به زمین یا ساختمان،وسایل الکترونیکی داخل ساختمانهایی که تا شعاع ۱۵km از محل برخوردودر محدوده میدان الکترومغناطیسی ایجاد شده قرار دارند،در معرض خطر خواهند بود।(شکل-۴) حفاظت موثر این تجهیزات در مقابل ولتاژهای القایی حاصله،وقتی امکان پذیر است که کلیه سیستم های حفاظت داخلی همراه با حفاظت خارجی ساختمان تواماٌ نصب شده باشند.حفاظت داخلی ازصاعقه عبارتست از تهیه وسایلی که به کمک آنها بتوان اثرات اضافه ولتاژهای القایی حاصل از جریانهای صاعقه رابرروی تجهیزات داخل ساختمان خنثی کرد.واز تئوری منطقه بندی ( (Zone Conceptجهت حفاظت داخلی ساختمان استفاده می شود. ضمناٌ برای کسب اطلاعات دقیق تربه استاندارد IEC-61643 که در این زمینه تدوین شده است مراجعه گردد. ۲۲-حفاظت تجهیزات نصب شده در داخل ساختمان
یک سیستم صاعقه اساساً از سه قسمت اصلی تشکیل شده است که از :

۲- هادی ها Conductor
۳- الکترود یا سیستم اتصال به زمین Earth termination ۱- آنتن برقگیر Air termination
آنتن های برقگیر : عبارتند از جسم نوک دار با الکترود لوله ای در اندازه مشخص و یک پایه که دارای یک زمینه هدایت کنندگی می باشد. وظیفه آنتن برقگیر این است که تخلیه الکتریکی صاعقه را که احتمال دارد در ساختمان تحت حفاظت صورت گیرد ، به طرف خود منحرف نموده و به طرف زمین بارهای مربوطه را هدایت می نماید. محل نصب آنتن برقگیر در بلندترین نقطه ساختمان می باشد.
هادی ها : که سبب ارتباط الکتریکی آنتن های برقگیر به زمین و به یکدیگر و نیز به اجسام فلزی مجاور می گردد. وظیف هادی ها تخلیه بارهای صاعقه از آنتن برقگیر به زمین می باشد. هادی ها می توانند بصورت تسمه ای یا کابلی شکل باشند.
سیستم اتصال به زمین : عبارت است از یک یا چند الکترود منفرد یا مرتبط که بارهای الکتریکی را از آنتن توسط هادی های نزولی به زمین منتقل می کنند.
رابط ها عبارتند از پیوند الکتریکی مابین دو یا بیشتر قسمت های سیستم حفاظتی.
اتصالات : عبارتند از هادی هایی که به منظور فراهم نمودن اتصال الکتریکی مابین حفاظت صاعقه و قسمت های فلزی دیگر و مابین قسمت های مختلف اخیر برقرار شده است.
بست ها : که جهت محکم نمودن هادی ها به ساختمان به کار می روند. این بست ها برای اندازه های مختلف تسمه باید طراحی گردد.

قطر و ضخامت آنتن برقگیر در صورت استفاده از میله باید مطابق با جدولی که ابعاد اجزاء تشکیل دهنده سیستم حفاظت صاعقه را می دهد اجرا شود.

تذکر : سقف ها با شیب ملایم آنهایی هستند که عرض آنها چنانچه مساوی یا کمتر از ۴۰ فوت ( ۱۲ متر ) باشد شیب آنها کمتر از یک هشتم ، چنانچه متجاوز از ۴۰ فوت ( ۱۲ متر ) باشد ، شیب آنها کمتر از یک چهارم باشد.

فاصله آنتن های برقگیر از انتهای بام یا خط الرآس سوله یا تغییر مسیر هر بام باید در حدود ۲ فوت ( ۶۰ سانتی متر ) باشد.
طول آنتن ها حداکثر ۱۵۰ و حداقل ۳۰ سانتی متر می باشند.
آنتن های برقگیر باید در قسمت های اساسی و محکم و در بلندترین نقطه ساختمان نصب گردند و سطح مقطع نقطه اتکا حداقل باید با سطح مقطع یکی باشد و طوری باید محکم گردند که احتمال واژگون شدن به وسیله باد را نداشته باشند. آنتن های برقگیر با ارتفاع متجاوز از ۶۰ سانتی متر ، باید نگهداری آنها از نقطه ای باشد که ارتفاع آن کمتر از ارتفاع نصب آنتن نباشد.
هواکش ، دودکش ، مخازن آب و سایر برجستگی های دیگر پشت بام که احتمال آسیب ناشی از شوک دارند باید به آنها اتصال الکتریکی ( به وسیله هادی های فرعی ، آنها را به هادی اصلی متصل نمود ) ایجاد نمود و یا ممکن است به وسیله یک هادی خارجی به یکدیگر متصل و سپس به اسکلت ساختمان وصل شوند که تعداد این اتصالات نباید از تعداد اتصال های زمین کمتر باشد. ۱- سیستم حفاظت بر سوله ها ( یا بام های مسطح ) : در این سیستم از روشی موسوم به سیستم حفاظت فاراده استفاده می نمایند. آنتن برقگیر بصورت لوله های کوتاهی است با نوک تیز که در چند متری یکدیگر دور تا دور پشت بام یا در خط الراس سقف سوله قرار دارند. ۲- بام های با شیب تند : حداکثر فاصله بین میله های برقگیر در خط الرآس بام های با شیب تند ، ۶ تا ۸ متری باشد. ۳- سقف با شیب ملایم : چنانچه عرض آنها از ۱۵ متر بیشتر باشد ، باید علاوه بر آنکه دارای آنتن های اضافی در خط الرآس و نقاط لازم دیگر باشند ، که فاصله آنها از ۱۵ متر تجاوز نکند ، دور تا دور آنها نیز آنتن هایی به فواصل ۶ تا ۸ متر باید نصب گردد.

هشدار های لازم:
اگر داخل ساختمان هستید به نکات زیر توجه کنید :
۱ – وسایل برقی مانند رادیو و تلویزیون را از برق بکشید و سیم آنتن را خارج کنید . 
۲ – از درب و پنجره و بخاری دیواری ، شوفاژ و دیگر هادی های الکتریسیته دور شوید .
۳۳ – به منظر جلوگیری از خطر آتش سوزی ناشی از صاعقه نسبت به نصب برق گیر در ساختمانهای بلند اقدام کنید .
اگر در خارج ساختمان هستید :
•در مکانهای مرتفع قرار نگیرید .
•از درختان ، تپه ها ، دیرکها ، طناب رختشویی ، سیم برق هوایی ، لوله های فلزی و آب دور شوید .
•به اشیاء فلزی ( از قبیل دوچرخه ، نرده های آهنی ، قلاب ماهیگیری ، لوازم فلزی خانه و واگنهای راه آهن ) دست نزنید .
•اگر در فضای باز گرفتار رعد و برق شدید ، زانو و پاهای خود را نزدیک یکدیگر قرار داده و سر خود را خم کنید .
•اگر در حال شناکردن هستید یا روی قایق سوارید فوراً از آب بیرون بیائید .
اگر در بیرون از خانه هستید ، زیر درخت یا نقاط مرتفع پناه نگیرید بلکه در محلی باز به حالت خمیده باقی بمانید .
ایستادن زیردرخت یا روی تپه هنگام صاعقه بدترین کار می باشد 
•داخل اتوبوس و ترن مکانهای امنی هستند ، بنابراین می توانید هنگام صاعقه به داخل ساختمان یا ایستگاه ترن زیرزمینی یا درون اتومبیل بروید .
•در صورتی که در اتومبیل هستید ،‌ در محل مطمئن توقف کنید و موتور را خاموش کنید و آنتن ماشین را پائین بکشید .
در هنگام رعد و برق سریعا بر روی زمین نشسته ،دولا شوید.هرگز به طور مستقیم روی زمین دراز نکشید.
در هنگام رعدوبرق از تجمع به دور هم خودداری نمایید.
دستگاههای الکتریکی خود را خاموش کنید.
از درختان تک و بلند، تپه ‎ها، تیرک‎ها، سیم برق هوایی، فنس ها، لوله‎ های فلزی آب، مناطق و علفزار های مرطوب و جویبار ها و مکان های پر آب و رودخانه ها دور شوید و از آنها فاصله بگیرید. ایستادن زیر درخت روی تپه هنگام صاعقه خطرناک‎ترین اقدام است.
از لبه صخره ها و بلندی قله ها فاصله بگیرید و به ارتفاعات پایین دست فرود آیید.
به غار های عمیق پناه ببرید. غار های کم عمق می تواند خطرناک باشد.
به اشیاء فلزی از قبیل کلنگ، باتوم کوهنوردی ، لوازم فنی سنگ نوردی، عینک با فریم فلزی و هر وسیله فلزی دیگر دست نزنید.
اگر در محوطه ای مسطح هستید، در محلی باز و بدون درخت ، به حالت خمیده دست را روی زانوهای خود قرار دهید و باقی بمانید و در نقاط مرتفع پناه نگیرید .
اگر لباس‎های شما خیس است سعی کنید آنها را هر چه زودتر خارج کرده و از خود دور کنید.
اگر هنگام رعد و برق، احساس کردید که موهای سر یا دست‎های شما سیخ شده و یا از سنگ‎ها و تورهای فلزی اطراف خود صدای وزوز شنیدند و یا بوی اوزون به مشام رسید، فورا آن محل را ترک کنید.
به مکانهای زیر بروید: بین درختان کوتاه در بین درختان بلند ، مکانهای خشک وبدون گیاه.
طناب های را که به همراه دارید بخصوص اگر خیس و مرطوب شده اند از خود دور کنید.
تنها در موارد اورژانس از تلفن همراه استفاده کنید.
در هنگام رعد و برق سریعا بر روی زمین نشسته ، دولا شوید. هرگز به طور مستقیم روی زمین دراز نکشید.

در هنگام رعدوبرق از تجمع به دور هم خودداری نمایید.
دستگاههای الکتریکی خود را خاموش کنید.

سوختگی های الکتریکی ناشی از رعد وبرق :
عبور جریان الکتریکی و صاعقه از بدن احتمالاً باعث ایجاد جراحتهای وخیم و حتی مرگ آور می شود . جریان برق ممکن است از صاعقه ( برق زدگی ) ‌باشد .

وقتی جریان برق از نقطه ای وارد بدن می شود از محل دیگر که در آن بدن با زمین تماس دارد خارج می شود . نقاط ورود و خروج جریان برق از بدن آسیب می بیند و آسیب این نقاط به صورت حفره ای شبیه به محل ورود گلوله به چشم می خورد .
به غیر از محل ورود و خروج جریان برق ، ‌بافتهایی که در مسیر این دو نقطه قرار دارند نیز تحت تأثیر جریان برق و حرارت تولید شده تخریب می شوند به طوری که هرچه ولتاژالکتریکی که وارد بدن می شود بیشتر باشد ، سوختگی ایجاد شده عمیق تر و جراحتهای باقی مانده وخیم تر خواهند بود .
علاوه بر این ،‌ جریان الکتریکی ضمن عبور از بدن در اعصاب ( محیطی و مرکزی ) ، ماهیچه ها و قلب تغییرات شیمیایی قابل توجهی ایجاد می کند و باعث اختلال در واکنش های بدن شده و یا به طور کلی باعث توقف آنها می شود ، در بسیاری از موارد اگر چه سوختگی خارجی ( محل ورود و خروج جریان برق ) به طور فریبنده ای کوچک است اما این مقدار کوچک نباید پوششی بر آسیب های وخیم تر عمقی باشد و ما را به اشتباه بیاندازد .
صاعقه یک منبع طبیعی تولید الکتریسیته ( جریان مستقیم با سرعت و ولتاژ فوق العاده زیاد ) است که به طور عادی برای رساندن خود به زمین از نزدیکترین زائده بلندی که در آن حوالی وجود دارد استفاده می کند و اگر شخصی در تماس ، یا حتی نزدیکی به یک زائده طبیعی مانند درخت ، برج یا دکل باشد صدمه شدیدی خواهد دید .
الکتریسیته تولید شده به وسیله برق آسمان عمرش فوق العاده کوتاه است اما می تواند موجب مرگ آنی ( به علت ایست قلبی ، تنفسی ) یا حداقل سبب به آتش کشیدن لباس شخص شود ( اما صدمات بافتهای عمقی به نسبت سبکتر است ) . بنابراین در زمان رعد و برق باید به سرعت از محلهای خطرناک دور شد .
عوارض تهدید کننده جان مصدوم درصاعقه زدگی :
با ورود جریان برق و صاعقه به بدن در اثر انقباضهای الکتریکی سفت ( کزازی شکل ) عضلات تنفسی یا آسیب مراکز تنفسی در مغز ( در بصل النخاع ) ایست تنفسی عارض می شود و پس از مدتی قلب نیز از حرکت می ایستد .

البته اگر جریان برق از خود قلب نیز عبور کرده باشد با ایجاد انقباضات کرمی شکل و غیرمؤثر و اسپاسمودیک در بطن ( فیبریلاسیون بطنی ) ایست قلبی اولیه خواهیم داشت .
پس از ایست قلبی – تنفسی اگر در عرض ۴ تا ۶ دقیقه عملیات احیاء شروع نشود مرگ قطعی و حتمی خواهد بود . اما قبل از شروع عملیات احیاء ابتدا باید تماس مصدوم را با جریان برق از بین ببریم .
صدمات ناشی از برخورد مستقیم صاعقه با شخص
برخورد مستقیم صاعقه با شخص ، خطرناک ترین حالت ممکن است. خطر وقتی بیشتر می شود که صاعقه از نزدیکی “قلب” یا از “سر” وارد بدن شود.
با اصابت صاعقه به شخص ، ممکن است صدمات زیر در بدن وی ایجاد شود:

کمتر پیش می آید که صاعقه باعث ضربه مغزی شود . معمولا این اتفاق زمانی می افتد که صاعقه به “سر” مصدوم برخورد کند و این نوع برخورد ، به ندرت روی می دهد اما در چنین حالتی احتمال مرگ بسیار زیاد است و احتمالا مصدوم در همان ساعات اولیه خواهد مرد. البته در مواردی هم شدت عارضه کمتر بوده و به صدمات مغزی خفیف تری میانجامد ، هرچند این صدمات نیز می توانند بسیار جدی باشند و منجر به عواقبی چون فلج دائم و … شوند.

این اتفاقی است که برای بیشتر صاعقه زده ها رخ می دهد . صاعقه می تواند با عبور دادن جریان برق از قلب یا با وارد کردن ضربه و شوک قوی به آن ، باعث توقف تپش قلب شود.

تقریبا در تمام برخورد های مستقیم ، درصدی از سوختگی دیده می شود. سوختگی ناشی از برخورد مستقیم صاعقه می تواند بسیار شدید و عمیق باشد یا بسیار خفیف و سطحی ؛ و این از عجایب صاعقه است ؛
گاه پیش می آید که برخورد صاعقه ، شخص را به تکه ای گوشت سوخته و سیاه رنگ تبدیل می کند و او را در دم می کشد اما درصد کمی از صاعقه زده ها دچار چنین سرنوشتی می شوند . در بیشتر موارد صاعقه از قسمتی از بدن وارد و از قسمتی دیگر خارج می شود و در طول مسیر عبور خود تمام بافتها را از درون می سوزاند ، در این میان هرچه اعضای سوخته شده مهمتر باشند خطر بیشتر است.
اما مواردی هم پیش می آید که صاعقه به دلیل سرعت زیادش تنها از سطح بدن عبور می کند و جز یک سوختگی سطحی ، اثر دیگری از خود بر جای نمی گذارد !

عبور جریان قوی برق از بافتهای درونی بدن ، علت اصلی خونریزی داخلی ناشی از صاعقه است و می توان گفت شمار زیادی از صاعقه زده ها دچار این جراحت می شوند.

تمامی کسانی که صاعقه با آنها برخورد کرده دچار برق گرفتگی می شوند. کمترین اثر برق گرفتگی با چنین ولتاژی یک شوک شدید است که در صورت معالجه نشدن منجر به بی هوشی ، کما و حتی مرگ می شود.

از دیگر عوارض برق گرفتگی با ولتاژ بالا ، صدمه دیدن دستگاه عصبی است.
اگر این آسیب در نخاع باشد می تواند منجر به فلج کامل یا فلج اندام تحتانی شود و اگر اعصاب سایر نقاط بدن لطمه ببیند عوارض مختلفی منجمله بی حسی در اندامها را به دنبال خواهد داشت.

آسیب دیدن بصل النخاع که کنترل دستگاه تنفسی را بر عهده دارد ، ضایعه ای است که باعث برهم خوردن نظم تنفس و حتی خفگی می شود. همچنین صدمه دیدن “ریه” می تواند باعث عفونت یا سایر مشکلات ریوی در آینده شود.

حرارت و ضربه ناشی از صاعقه می تواند باعث پاره شدن پرده صماخ گوش و لطمه خوردن مویرگها و مردمک چشم شود که اثر آن کری و کوری موقت یا دائم خواهد بود . ۱ – ضربه مغزی : ۲۲- ایست قلبی : ۳- سوختگی : ۴- خونریزی داخلی : ۶- آسیب به دستگاه عصبی : ۷- مشکلات تنفسی : ۸- ضایعات در چشم و گوش : ۵۵- شوک :
علائم و نشانه های فرد آسیب دیده
بر اساس شدت صدمات وارده ، تابلوی بالینی متفاوت بوده و ممکن است فقط به صورت اختلال هوشیاری گذرا و لحظه ای و احساس ضعف و بی حسی موقت باشد و اینکه سوختگی شدید ، ایست قلبی – تنفسی و مرگ رخ می دهد . میزان مرگ ومیر کلی آن حدود ۳۰-۲۰ درصد بوده و در ۷۰ درصد قربانیان نجات یافته ، عوارض ماندگار موجود خواهد آمد .
•اختلال عصبی ممکن است بصورت کاهش سطح هوشیاری ، فراموشی ، تشنج ، سوزن سوزن یا گزگز شدن انتهای دست و پا ، ‌لکنت زبان ، خونریزیهای مغزی و کما باشد . 
•اختلالات قلبی – عروقی بصورت نامنظم شدن ضربان قلب و افزایش فشار خون شدید می باشد .
•شایعترین علت مرگ در این افراد ایست تنفسی است . پوست از چند طریق ممکن است دچار ضایعه شود . شایعترین آن ، سوختگی حاصل از انتقال سطحی جریان الکتریکی است و همچنین سوختگی در نواحی مرطوب بدن ( زیربغل و کشاله ران ) ممکن است اتفاق بیافتد . 
•بیش از ۵۰٪ قربانیان صاعقه دچار پارگی پرده گوش شده و همچنین ممکن است اختلال شنوایی در اثر جابجایی استخوانهای گوش میانی بوجود آید .
چگونه کمک درمانی کنیم ؟
•کلیه مصدومین باید در هر شرایطی به بیمارستان انتقال یابند و دست کم به مدت ۲۴۴ ساعت تحت نظر قرار گیرند . تنفس و نبض مصدوم ارزیابی شود و در صورت عدم وجود نبض و تنفس احیای قلبی – ریوی ( طبق دستورالعمل ) انجام گردد . در مصدومین حتماً باید به فکر خونریزی داخلی بود . 
•آسیبهای ناشی از سوختگی ( طبق دستور العمل )‌را درمان نمایید و همچنین باید مراقب آسیبهای ستون فقرات و شکستگیها بوده و در صورت وجود آسیب طبق دستورالعمل مربوطه اقدام نمائید .

علایم و عوارض :
علایم برق گرفتگی می تواند بسیار شدید و عمیق و شامل سوختگی مختصر تا شدید پوست و سایر بافت های بدن و احشاء، مورمور شدن بدن، نامنظمی یا ایست ضربان قلب، ایست تنفس، کاهش سطح هوشیاری، تشنج، نارسایی کلیوی، شکستگی و دررفتگی استخوان ها و مفاصل و … باشد.
نکته :
هنگام رعد و برق برای حفاظت در برابر برق گرفتگی و صاعقه زدگی به مکان های سرپوشیده پناه ببرید و از ایستادن در مکان های باز، کنار درختان یا باجه تلفن و ماندن داخل آب (دریا، استخر و …)خودداری کنید.
اقدامات و کمک های اولیه
شعله ای در لباس مصدوم را خاموش کنید، لباس های سوخته و نیمه سوخته را از بدن او خارج نمایید و چنانچه ضربان قلب مصدوم متوقف شده باشد فوراً عملیات احیاء را شروع کنید.
ناحیه سوخته بدن را با گاز استریل یا یک تکه پارچه تمیز بپوشانید و هرگونه شکستگی اندام ها را آتل بندی کنید. توجه کنید در فرد دچار برق گرفتگی احتمال آسیب مهره های گردنی و متعاقباً فلج اندام ها بسیار زیاد است؛ پس در حمل و نقل مصدوم تلاش کنید هیچ گونه حرکتی به سر و گردن وی داده نشود.
مصدومین فوق باید پس از کمک های اولیه حتماً به بیمارستان منتقل شوند چرا که برق گرفتگی می تواند عوارض تأخیری خطرناکی داشته باشد.
نکته:
جریان برق با ولتاژ بالای کابل های صنعتی می تواند تا چندین متر قوس الکتریکی داشته باشد. بنابراین به قربانیان این نوع برق گرفتگی نباید نزدیک شد مگر این که به طور رسمی اطلاع داده شود که برق قطع شده است. لازم به ذکر است عملیات نجات در فردی که دچار صاعقه زدگی شده، مشابه حالت برق گرفتگی است.
پیشگیری

هنگام رعد و برق، برای حفاظت در برابر برق گرفتگی و صاعقه زدگی به مکان های سرپوشیده پناه ببرید و از ایستادن در مکان های باز، کنار درختان یا باجه تلفن و ماندن داخل آب (دریا، استخر و …) خودداری کنید

قفس فاراده

قفس فاراده

Fig_J14_EN

ارزیابی میزان خطر صاعقه :


ارزیابی میزان خطرصاعقه برای هربنا یا سازه به عوامل مختلفی بستگی دارد که عبارتند از:

– نوع بنا یا سازه(برج ،مسکونی ،تجمعی ، صنعتی و مانند آن).

– ساختار و مصالح به کار رفته در بنا ( چوب ، آجر، بتن فولاد و مانند آن)وبه اختصار یعنی آنکه نوع ساختمان آجری است یا بتنی ؟ دارای اسکلت فلزی یا بتنی مسلح است ؟ آیا سقف فلزی دارد ؟ و…

– ارتفاع ساختمان و موقعیت نسبی آن نسبت به بلندی سایر بنا ها .

–  موقعیت توپوگرافی محل (زمین مسطح ، تپه ماهور کوهستانی ).

– محتوای تصرف از نظر آتش گیری و نیزدفعات رعدو برق درمنطقه مورد نظر.

– محتویات ساختمان چیست ؟( اشیاء با ارزش یک موزه ، مرکز تلفن یا اثاثیه یک خانه کهنه معمولی یا اشیاء اسقاط) و… انواع صاعقه گیر ها ( برقگیرها )

بطور کلی برقگیر هایی که معمولاً برای محافظت خارجی ساختمانها و دیگر تأسیسات یاد شده ممکن است بکار برده شود عبارتند از:
۱- برقگیر قفس فاراده یا شکلی از آن.
۲- برقگیر مولد برق اولیه : (ESE : Early Streamer Emission) موسوم به صاعقه گیر الکترونیکی.
۳-صاعقه گیر های اتمی که از سال ۱۳۷۵ در ایران استفاده از آن ممنوع گردیده است. 

صاعقه گیر قفس فارادی یا شکلی از آن

این گونه برقگیر ها که ممکن است متشکل از تعدادی میله برقگیر فرانکلین یا ترکیبی از میله ها ، سیم های کشیده شده و شبکه هادی ها باشند برای محافظت ساختمان ها و دیگر تأسیسات (از جمله مناره ها و برج ها ،بناهای گنبدی شکل دودکش های بلند کارخانه ها، دکل های خطوط انتقال نیروی برق و…) در برابر صاعقه مناسب و قابل استفاده می باشند.

 اصول محافظت ساختمان ها ودیگرتأسیسات 
این اصول در برابرصاعقه براساس جذب، هدایت و دفع بارالکتریکی به زمین از طریق مسیرعبورجریان برق جداگانه باحداقل مقاومت و بدون اینکه خطری ایجاد کند استوار می باشد، که ممکن است شامل سیستم های حفاظت بیرونی و درونی باشد. مسیرمذکورشامل پایانه های هوایی(Air Terminals) شبکه هادی ها از تسمه و یا سیم مسی رابط و پایانه های زمینی(Ground Terminal) یاچاه های اتصال زمین می باشد.
ساده ترین نوع برقگیر که در سال ۱۷۵۳ میلادی به وسیله بنجامین فرانکلین طراحی و ساخته شده ، میله فرانکلین است .

  مشخصات پایانه های هوایی قفس فاراده ( میله های برقگیر) 
۱-میله برقگیر یک پارچه و سر میله تک شاخه و یا چند شاخه باید از جنس مس خالص ( با ضریب رسانایی حدود ۹۵% )ساخته شده و نوک شاخه ها به شکل مخروطی تیز بوده و صیقلی شده باشد . برای نصب سر میله ( تک شاخه و یا چند شاخه ) بر روی میله برقگیر باید قسمت داخلی انتهای آن دارای دنده متناسب با دنده میله برقگیر باشد.

۲- میله برقگیر دو پارچه باید از میله یا لوله مسی صیقل داده شده ساخته شود و دو سر آن ( یک سر برای سوار کردن سر میله و سر دیگر برای نصب روی پایه ) به طول مناسب دنده شده باشد .
قطر میله برقگیر دو پارچه باید حداقل ۶۳/۰ اینچ و حداکثر یک اینچ بوده و طول آن نیز حداقل یک متر و حداکثر دو متر باشد. در مواقعی که ارتفاع میله برقگیر از یک متر متجاوز باشد باید از نقطه ای که از نصف ارتفاع آن کمتر نباشد حفاظت لازم از نظر ایستایی میله در نظر گرفته شود.


 طول میله برقگیر فرانکلین 
این طول برای ابنیه مختلف به شرح ذیل خواهد بود :

– مناره ها و برج ها و دود کشهای کارخانه ها و دکل های خطوط انتقال نیرو ، حدود ۳۰ سانتیمتر بالاتراز سطح حفاظت.


– بنا های گنبدی شکل بستگی به شعاع مقطع قسمت پایین گنبد داشته و طول میله برقگیر باید طوری محاسبه و انتخاب شود که بعد از نصب برروی گنبد ، ارتفاع ازسر برقگیر تا مقطع قسمت پایین گنبد بزرگتر از شعاع قسمت پایین گنبد باشد.ولی در هر صورت نباید ارتفاع برقگیر از بالاترین بخش گنبد کمتر از ۳۰ سانتیمتر باشد.

– برج سیلو های مختلف ، ساختمان کارخانه ها و ابنیه گوناگون ، حداقل یک متر و حداکثر دو متر بالاتر از سطح حفاظت . دراینگونه موارد باید تمهیدات لازم در برابر واژگونی میله هاپیش بینی شود.

– دکل های فلزی مخصوص نصب پرچم ، میله برقگیر مخصوص تیرهای نصب پرچم مشابه سر میله تک شاخه بوده ، ولی باید دارای پایه مناسب برای نصب روی تیر و همچنین حفاظ باشد

 تعداد پایانه ها ی هوایی مورد نیاز برای محافظت ساختمان ها  
این تعداد ، بستگی به سطح پشت بام ساختمان مربوط ارتفاع و فواصل نصب پایانه ها دارد که برحسب استاندارد مورد مراجعه مختلف است . فواصل نصب پایانه های مزبور بر اساس استاندارد NFPA 78 به قرار زیر است :


فواصل پیرامونی سقف های مسطح یا با شیب ملایم و سقف ها ی شیب دار : در مواردی که ارتفاع نوک پایانه هوایی از سطح مورد حفاظت از ۱۰ اینچ (۲۵۴ میلیمتر) کمتر نباشد، فواصل نصب بر روی نقاط پیرامونی سقف های مسطح یا با شیب ملایم و نیز فواصل نصب بر روی خط الرأس سقف های شیب دار ، باید حد اکثر ۲۰ فوت ( ۶ متر ) در نظر گرفته شود و در صورتی که ارتفاع مزبور حداقل ۲۴ اینچ ( ۶۰ سانتیمتر) یا بیشتر باشد فواصل نصب باید حداکثر ۲۵ فوت ( ۶/۷ متر) انتخاب شود . در این گونه موارد فواصل نصب پایانه های هوایی از کناره ها و گوشه های سطوح نامبرده باید حداکثر ۶۰ سانتیمتر باشد .

 حداقل ابعاد تسمه مسی شبکه 
حداقل ابعاد تسمه مسی شبکه مشبک اتصال پایانه های هوایی در پشت بام برای سطح تا ۱۸۰۰ متر مربع باید ۳*۲۰ میلیمتر و بیشتر از ۱۸۰۰ متر مربع ۳*۲۵ میلیمتر یا بیشتر باشد .

 حداقل ابعاد تسمه مسی هادی های ارتباطی 
حداقل ابعاد تسمه های مسی هادی های ارتباطی ( هادی های نزولی ) بین شبکه مشبک پشت بام و پایانه های زمینی برای سطح تا ۹۰ متر مربع وارتفاع حداکثر ۱۸ متر باید۳*۲۰ میلیمتر(یا سیم مسی لخت با حداقل سطح مقطع ۷۰ میلیمتر مربع) و بیشتر از ۹۰ متر ۳*۲۵ میلیمتر(یا سیم مسی لخت با حداقل سطح مقطع ۹۰ میلیمتر مربع) یا بالاتر باشد .

 روش های تعیین تعداد هادی های نزولی 
برای تعیین تعداد هادی های ارتباطی ( هادی های نزولی ) بین شبکه مشبک پشت بام و پایا نه های زمینی باید یکی از دو روش زیر ملاک محاسبه قرار گیرد :
۱-احتساب پیرامون : بطور کلی برای هر ۳۰ متر محیط ( پیرامون) تحت محافظت برقگیر باید یک نزولی در نظر گرفته شود ، لیکن حداقل تعداد نزولی ها برای هر نوع ساختمان دو عدد خواهد بود

۲-احتساب مساحت : برای سطوح تحت محافظت برقگیر تا ۳۶۰ متر مربع مساحت دو نزولی و برای هر ۲۷۰ مترمربع مازاد یک نزولی اضافی باید در نظر گرفته شود .
بطور مثال: تا ۳۶۰ متر مربع دو نزولی ، ۶۳۰ متر مربع سه نزولی، ۹۰۰ متر مربع چهار نزولی ، ۱۱۷۰ الی ۱۲۰۰ متر مربع پنج نزولی ، و به همین ترتیب ادامه می یابد .

لازم به ذکر است که در هر صورت مقاومت سیستم پایانه های زمینی نباید از ۵ اهم تجاوز کند .

برق سه فاز و تجهیزات آن

برق سه فاز و تجهیزات آن
WWW.PEG-CO.COM
۲۸ اسفند ۱۳۹۵
by مديريت وبسايت مهندس عليخانی |
همانطور که می دانیم در اتصال ستاره اختلاف سطح هر فاز با سیم نول ولتاژ فازی (UP) و اختلاف سطح هر فاز با فازی دیگر ولتاژ (Ul) را تشکیل می دهند. مقدار ولتاژ خط از مجموع دو ولتاژ فازی بدست می آید. به همین جهت برای بدست آوردن مقدار Ul باید برآیند دو ولتاژ فازی را رسم و مقدار آن را محاسبه نماییم. بدین ترتیب که یکی از بردارها را در امتداد و به اندازه خودش رسم کرده و سپس بردار را با بردار پهلویش رسم می کنیم. رابطه روبرو برقرار است :
اما جریانی که از هر کلاف عبور می کند همان جریان خط می باشد. یعنی در اتصال ستاره جریان خط مساوی جریان فاز است . IL=IP
-محاسبه جریان و ولتاژ در اتصال مثلث
در این روش کلافهای مصرف کننده یا مولد به شکل مثلث قرار می گیرند. همانطور که می دانیم ولتاژ خط UL در اتصال مثلث همان ولتاژی است که در دو سر کلاف قرار دارد یعنی در اتصال مثلث ولتاژ خط برابر با ولتاژ فاز است : UL = UP
اما جریانی که از هر خط می گذرد مجموع برداری جریان دو کلاف بعدی است. پس جریان هر خط ۷۳/۱ برابر جریان هر فاز است :
-اتصال مختلط ترکیبی از اتصالهای ستاره و مثلث می باشد.
توان در مدارهای سه فاز
در یک اتصال سه فاز توان کل از مجموع توانهای هر فاز بدست می آید : P = P1+P2+P3
اگر بار متعادل باشد داریم : P1 = P2 = P3 = Pph
پس توان کل می تواند سه برابر توان هر فاز باشد : P = 3Pph
P = Up.lp.COS (j)
در اتصال ستاره توان بصورت زیر بدست می آید :
و ip=iL
در اتصال مثلث هم رابطه بالا صادق می باشد.
روشهای اندازه گیری توان
معمولاً برای اندازه گیری در سیستم سه فاز از دو روش زیر استفاده می کنند :
الف- روش چهار سیم (۳ واتمتری)
ب- روش سه سیم (۲ واتمتری)
الف- روش چهار سیم :
در این روش با استفاده از ۳ واتمتر که سر راه هر فاز قرار می گیرد و سیم نول توان هر فاز جداگانه اندازه گیری شده و مجموع این سه واتمتر توان کل می باشد. اگر بار کاملاً متعادل باشد هر سه واتمتر دارای مقادیر مساوی می شوند. پس در یک بار متعادل فقط از یک واتمتر هم می توان استفاده کرد.
ب- روش سه سیم :
در این روش بدون سیم نول عمل می شود. دو واتمتر که هر کدام بین دو فاز قرار می گیرد البته فاز وسط برای فازهای اول و سوم مشترک است توان کل از مجموع دو واتمتر بدست می آید.
مزایای سیستم سه فاز
۱- در جریان تکفاز مقدار قدرت لحظه ای در قسمتهایی به صفر می رسد اما در جریان سه فاز هیچگاه توان لحظه ای صفر نمی شود چون اگر یکی از فازها مقدارش به صفر برسد فازهای دیگر دارای مقادیر هستند.
۲- راه اندازی موتورهای آسنکرون : می دانیم که برای گردش موتورهای آسنکرون احتیاج به میدان دوار است که این میدان با جریان تکفاز ساخته نمی شود.
۳- تبدیل جریان متناوب به جریان مستقیم : دامنه یکسو در تبدیل سیستم سه فاز به جریان مستقیم دارای ضربان کمتری نسبت به جریان یکسو شده توسط جریان متناوب تکفاز بوده و ضریب بهره آن زیاد است.
عایق کابلها
برای پوشش عایقی سیم ها از پلاستیک / لاستیک و یا از کاغذ استفاده می شود. امروز کابل با عایق پلی وینل pvc بیشتر از کابلهای دیگر بکار می رود. عایق دیگری بنام پلی اتیلن نیز وجود دارد. عایق اکثر کابلهای جریان قوی از کاغذ آغشته به روغن تهیه می شود.
از عایق لاستیکی در جاهایی که احتیاج به چرخش زیاد باشد نیز استفاده می کنند.
ساختمان کابلهای فشار قوی و حفاظت آنها :
قسمت اصلی ساختمان کابلها هادی و عایق آن است. ضمناً کابل را باید در مقابل پدیده های زیر حفاظت نمود :
الف- حفاظت در مقابل فشار و ضربه های مکانیکی
ب- حفاظت در مقابل زنگ زدگی و اکسید شدن هادی
پ- حفاظت در مقابل اثرات شیمیایی و پوسیدگی
ت- حفاظت در مقابل اثرات میدان الکتریکی و اتصال کوتاه شدن و میدان های خارجی و جریان زیاد
علایم اختصاری کابلها
علایم اختصاری کابلهای لاستیکی و پلاستیکی به شرح زیر است :
بعد از حروف اختصاری تعداد سیم های داخل کابل و مقطع آنها با عدد مشخص و نوع مقطع با حروف زیر تعیین می شود :
r : مقطع گرد s : مقطع مثلثی e : هادی یک رشته ای m : هادی چند رشته ای
معمولاً ولتاژ نامی فازی را با Vo و ولتاژ خطی را با حرف V بعد از علامات اختصاری ذکر می کنند.
مثال : مشخصات کابل زیر را بخوانید. NYY 3*50+ 25 sm
(۰/۶ / ۱kv)
کابل سه فاز با هادی مسی به مقطع ۵۰ میلی متر مربع و سیم نول به مقطع ۲۵ میلی متر مربع با مقطع مثلثی چند رشته ای با عایق و غلاف پروتودور (pvc) برای ولتاژ ۶/۰ کیلو وات فازی و ۱ کیلو ولت خطی بدون محافظ. چون این کابل دارای نوار محافظ نیست در جایی مصرف می شود که هیچگونه فشار مکانیکی به آن وارد نشود.
فیوز
از فیوز برای محافظت سیم و کابل ودستگاههای اندازه گیری؛ ترانسفورماتور؛ ماشینهای الکتریکی و دیگر مصرف کننده ها در مقابل جریانهای اضافی و اتصال کوتاه استفاده می شود. البته فیوز در جایی بکار می رود که ارزش نصب یک رله و یا یک کلید جریان را نداشته باشد.
فیوزها براساس مقدار ولتاژ و نوع ساختمان قطع کننده شان به انواع زیر تقسیم می شوند :
الف- فیوز حرارتی ذوب شونده
ب- فیوز حرارتی (بی متال)
پ- فیوز مغناطیسی
ت- فیوز توان بالا NH
ث- فیوز فشار قوی HH
الف- فیوزهای حرارتی ذوب شونده :
در فیوز ذوب شونده یک سیم حرارتی وجود دارد که سر راه جریان بسته می شود و در اثر عبور جریان زیاد گرم شده و در درجه حرارت معینی ذوب می شود و مدار را قطع می کنند جرقه ای که در زمان قطع ایجاد می شود باعث سوختن وسیاه شدن کنتاکت و عایق های اطراف می شود که بایستی برطرف گردد.
برای برطرف نمودن اثر جرقه سیستم حرارتی را در داخل یک فشنگ چینی یا سفالی عبور می دهند و اطراف سیم را با ذرات کوارتز پر می کنند جرقه ایجاد شده در اثر قطع توسط براده کواتز خنک شده و از بین می رود.
برای تشخیص فیوز ساخته از پولک نشانه استفاده می کنند. این پولک توسط سیم نازکی محکم شده است.
این سیم نازل در هنگام ذوب شدن سیم داخل فیوز پاره شده و پولک توسط نیروی فنر کوچک که در زیر آن قرار گرفته قدری به خارج پرتاب می شود و نشان می دهد که فیوز سوخته است. ضمناً رنگ پولک فیوز نشان دهنده جریان اسمی فیوز است. (جدول۱-۱)
ب-فیوز حرارتی بی متال
فیوز حرارتی بی متال برای حفاظت در مقابل بار اضافی مدار را قطع می کند. بی متال در مقابل حرارت ناشی از بار اضافی لحظه ای تغییر شکل داده و باعث قطع مدار می شود.
پ-فیوز مغناطیسی
فیوزهای مغناطیسی نیز تابع شدت جریان هستند. در اثر بروز اضافه بار میدان مغناطیسی سیم پیچی فیوز قوی شده و براساس خاصیت جذب یک هسته آهنی مدار را قطع می کند. در این فیوزها زمان قطع خط را می توان بوسیله فنر تنظیم کرد. در بین فیوزهای مغناطیسی فیوز سریع نیز وجود دارد که قطع مدار در زمان معینی تنظیم نمی شود بلکه فیوز با عبور جریان بیشتر از نامی خط فوراً قطع می گردد.
ت- فیوز توان بالا
در شبکه های فشار ضعیف با توان زیاد از فیوزهای NH استفاده می شود. این فیوزها دارای دسته ای می باشند که توسط آن فیوزها در جای خود می اندازند و یا خارج می کنند و به آن فیوزکش گویند.
ث- فیوز فشار قوی
فیوزهای H.H برای فشار قوی مورد استفاده قرار می گیرند و خیلی بلندتر از فیوزهای معمولی تا ۵۰۰ ولت است. برای حفاظت ترانسفورماتورهای توزیع و اندازه گیری مورد استفاده قرار می گیرند.
فیوز H.H فقط در جایی بکار برده می شود که قدرت اتصال کوتاه از MVA400 تجاوز نکند. ساختمان فیوز H.H شبیه فیوز فشار ضعیف است. در داخل یک لوله چینی یا فیبری بزرگ سیم فیوز بصورت مارپیچ قرار گرفته و در دو انتها به دو کلاهک فلزی محکم شده است. سیم فیوز بطور آزاد در داخل براده کوارتز قرار گرفته یا مدار در داخل لوله دندانه است و سیم از داخل دندانه ها عبور کرده است. فیوزهای فشار قوی دارای یک سیم فرعی اند که با قطع شدن آن دکمه ای به خارج پرتاب می شود و نشان می دهد که فیوز سوخته است. می توان از حرکت این دکمه برای مدار فرعی استفاده کرد که از قطع فیوز در داخل اطاق فرمان اطلاع حاصل کرد.
انتخاب نوع فیوز
برای خطوط ساده فیوزهای ذوب شونده جهت حفاظت کافی است. اما در شبکه های گسترش یافته با مصرف کنندگان صنعتی تنها فیوزهای ذوب شونده کافی نیست. زیرا در صورت سوختن یکی از سه فیوز قبل از دو فیوز دیگر موتور تحت ولتاژ دو فاز باقی مانده و خطر سوختن آن در بین است. باید از فیوز بی متال و مغناطیسی استفاده کرد مقدار فیوز برای کابل یا سیم معلوم با توجه به شدت جریان مجاز عبوری از سیم و جریان نامی فیوز انتخاب می شود.
جداول زیر جریان مجاز سیم و فیوز را مشخص می کنند.
تعیین افت ولتاژ مجاز و انتخاب سطح مقطع هادی
خطوط هادی الکتریسیته در حقیقت مقاومتهای الکتریکی هستند که از آنها جریان عبور می کند. با اتصال مصرف کننده به چنین خطوطی و عبور جریان از آنها در خط افت ولتاژ پدید می آید.
با توجه به قانون اهم : مقاومت خط × جریان مصرفی = افت ولتاژ
DU = l.R
در انتهای خط ولتاژ به اندازه DU2 کمتر از ولتاژ ابتدای خط است. آنچه که برای مصرف کننده مهم است تامین توان نامی آن است.
برای رسیدن به انی امر باید نکات زیر را درگرفت :
الف- سطح مقطع کابل و در نتیجه مقاومت آن را باید طوری انتخاب کرد که افت توان از حد معینی تجاوز نکند و در ضمن حرارت ایجاد شده در اثر عبور جریان از حد معینی تجاوز نکند.
ب- هادیها باید استحکام مکانیکی کهفی داشته باشند. حداکثر افت ولتاژ به درصد در شبکه های گوناگون مطابق جدول زیر می باشد :
افت ولتاژ قابل در فشار ضعیف برای مصرف کننده های مختلف چنین است :
۱- افت ولتاژ در مورد مصرف کننده های روشنایی ۵/۱ درصد
۲- افت ولتاژ در مورد مصرف کننده های الکترومغناطیسی مانند موتور و غیره ۳ درصد
موازی بستن آلترناتورها :
اتصال یک آلترناتور با آلترناتور دیگر بطور موازی و یا اتصال آلترناتوری به یک شبکه جریان متناوب را عمل سنکرونیزاسیون می نامند. و برای سنکرونیزاسیون مناسب شرایط زیر لازم است :
الف- تساوی ولتاژ موثر آلترناتورها
ب- متناسب بودن سرعت به طوری که فرکانسها باهم برابر باشند.
پ- تساوی فازها
بخش دوم : وسایل کنترل ساده
کلیدها
جهت کنترل وسایل الکتریکی و مصرف کننده ها از وسایل مختلفی استفاده می شود که ساده ترین این وسایل کلیدها هستند. بطور کلی کلید وسیله ای است که با تغییر حالتی که در این وسیله ایجاد می شود. باعث قطع یا وصل مدار می شود. عمل تغییر حالت کلید از نیروی مکانیکی ناشی می شود و نیز اینکه این نیروی مکانیکی مستقیماً به کلید اعمال شود و یا توسط انرژی دیگر مثل الکتریسیته.
می توان کلیدها را کلاً به دو دسته تقسیم نمود :
الف- کلیدهای ساده :
برای تغییر حالت احتیاج به انرژی مکانیکی دارند که بصورتهای یک پل و دو پل و سه پل و … ساخته می شوند که از نظر ساختمان خود نیز به چند دسته تقسیم می گردند.
ب- کلیدهای مرکب :
این کلیدهای نیروی مکانیکی را جهت تغییر حالت از انرژی واسطه ای دریافت می کنند مثل رله ها و کنتاکتورها.
انواع کلیدهای ساده :
کلیدهای ساده بطور کلی به دو دسته تقسیم بندی می شوند :
کلیدهای لحظه ای (شستی ها)
کلیدهای دائمی که معمولاً از نظر ساختمان بصورتهای اهرمی و غلطکی و زبانه ای ساخته می شوند که در مورد هرکدام توضیحاتی داده می شود.
۱-کلید اهرمی ساده
کلید اهرمی ساده از جمله ساده ترین کلیدها بوده و بوسیله اهرمی که به تیغه های کلید نیرو وارد می کند ارتباط برقرار می نماید. تیغه های کلید به صورت یکنواخت به کنتاکتهای ثابت وصل می شوند. معمولاً از کلیدها بیشتر برای جداکردن مدارهای کم جریان استفاده می کنند. در صنعت اغلب به این «کلید چاقویی» و یا «کلید کاردی» می گویند. در کلیدهای جریان کمتر با استفاده از دو کنتاکت که با فاصله قرار دارند با بستن رشته سیم نازکی عمل فیوز را برای هر تیغه انجام می دهند و در کلیدهای قدرت بالاتر از فیوزهای کاردی (NH) در زیر تیغه استفاده می کنند.
۲-کلیدغلطکی
ساختمان این کلیدها از یک استوانه عایق که حول محوری بصورت غلطک حرکت می کند تشکیل شده در روی استوانه در قسمتهای لازم قطعات هادی بصورت نوار قرار داده شده فرم استوانه و قطعات هادی بصورتی است که با حرکت استوانه در حول محورش می تواند کنتاکتهای ثابتی را به هم وصل و یا از هم جدا نماید.۳-کلید زبانه ای
در کلید غلطکی به خاطر تماس و سائیدگی که بین نوار هادی و کنتاکتهای ثابت بوجود می آید از عمر کلید کاسته می شود. به همین خاطر از کلید غلطکی کمتر استفاده می شود و بجای آن از کلید زبانه ای استفاده می شود.
در این کلید بجای قراردادن نوار هادی روی استوانه استوانه را طوری طراحی می کنند که دارای برجستگی و فرورفتگی هایی می باشد که این استوانه حول محور خود حرکت کرده و زبانه هایی را بالا و پائین می برد. زبانه مزبور کنتاکتهای متحرک را به کنتاکتهای ثابت وصل و یا‌آنها را از هم جدا می کند. این کلید بصورتهای روکار و توکار بکار می رود.
راه اندازی الکتروموتور با استفاده از کلیدهای ساده :
مصرف کننده های سه فاز و الکتروموتورهای با قدرت کم را می توان بطور مستقیم به شبکه وصل کرد. در راه اندازی به طور مستقیم از انواع کلیدهای ساده استفاده می کنند. معمولاً این گونه کلیدها ۶ کنتاکت دارند که سه کنتاکت ورودی با حرفهای R,S,T و سه کنتاکت خروجی به حرفهای U,V,W مشخص و دارای دو حالت قطع و وصل می باشند که با علامتهای (O) برای قطع و (I) برای وصل. در نقشه های الکتریکی کلیدها را در حالت قطع نشان می دهند.
راه اندازی موتورها با استفاده از کلید ستاره – مثلث :
همانطوریکه گفته شد موتورهای قدرت پائین را می توان بطور مستقیم به شبکه وصل کرد.
اما الکتروموتور با قدرتهای بالاتر را به علت جریان نسبتاً زیاد در راه اندازی نباید مستقیماً به شبکه وصل کرد بلکه بطور تدریجی، که روشهای مختلفی برای این کار وجود دارد که ساده ترین آنها راه اندازی به روش ستاره مثلت است که هم با کلیدهای ساده و هم مرکب قابل اجرا می باشد.
کلیدهای ستاره- مثلث ساده نیز معمولاً بصورت غلطکی و زبانه ای ساخته می شدند.
این کلید ابتدا سیم پیچهای موتور را بصورت ستاره به شبکه وصل می کند. پس از اینکه موتور به سرعت نرمال خود رسید، با تغییر حالت کلید سیم پیچهای موتور را به حالت مثلث در شبکه قرار می دهد.
پس کلید دارای سه حالت قطع – ستاره و مثلث می باشد.
بخش سوم : کلیدهای مرکب
کلیدهای مرکب
همانطور که گفته شد کلیدهای مرکب نیروهای مکانیکی جهت قطع و وصل را از انرژی واسطه ای مانند الکتریسیته دریافت می کنند مانند رله و کنتاکتور.
تعریف رله :
بطور کلی رله به دستگاهی گفته می شود که در اثر تغییر کمیت الکتریکی و یا کمیت فیزیکی مشخص تحریک شده و موجب بکار افتادن دستگاه یا ماشینی بشود.
تعریف کنتاکتور :
کنتاکتور نیز یک رله است (کلید بوبین دار) که مانند کلید ساده سه فاز دارای سه کنتاکت برای وصل مدار قدرت و کنتاکتهای کمکی جهت مدار فرمان می باشد و اساس کارش بر مبنای بوبین سیم پیچی شده با هسته آهنی است.
-سیم پیچ کنتاکتور ممکن است با جریان مستقیم یا متناوب و یا ولتاژ های ۳۳۰، ۲۲۰، ۱۲۷، ۱۱۰ و … و با جریان کم تحریک شود. هسته آهنی از دو قسمت که یکی ثابت و دیگری متحرک است ساخته شده.
قسمتی که در زیر قرار گرفته ، ثابت و قسمت بالائی متحرک است و توسط فنر از قسمت ثابت فاصله می گیرد. سیم پیچ کنتاکتور روی قرقره پیچیده در وسط هسته جای می گیرد. زمانی که این بوبین تحریک شود بخش ثابت هسته بخش متحرک را به سمت خود می کشد و هنگامی که بوبین از منبع انرژی قطع شود.
فنرها قسمت متحرک را مجدداً به جای خود برمی گردانند.
بر روی قسمت متحرک، کنتاکتهای کنتاکتور نصب شده است که با حرکت هسته بالا و پائین می روند.
و با کنتاکتهای ثابتی که در اطراف کنتاکتور قرار دارد تماس برقرار می کنند. بدین ترتیب که کنتاکتهایی که از نظر الکتریکی باز بودند، در اثر جذب هسته بالایی بسته و کنتاکتهای بسته باز می شوند.
کنتاکتهای یک کنتاکتور به دو دسته اصلی و فرعی تقسیم می شوند :
کنتاکتهای اصلی برای ورود جریان سه فاز از شبکه به مصرف کننده و کنتاکتهای فرعی به عنوان کنترل در مدار فرمان عمل می کنند. معمولاً جریانی که کنتاکتهای فرعی می توانند از خود عبور دهند کمتر از جریانی است که کنتاکتهای اصلی از خود عبور می دهند.
ساختمان داخلی کنتاکتور بصورت زیر می باشد :
قاب نگهدارنده کنتاکتهای بالایی
تیغه اصلی
بوبین
هسته
حلقه اتصال کوتاه
کنتاکت اصلی
کنتاکت فرعی
بست نگهدارنده
فنر
قاب نگهدارنده کنتاکتهای پایین
کانال جداکننده
پین نگهدارنده
کنتاکت اصلی
کنتاکت فرعی
بست نگهدارنده
مشخصات کنتاکتور :
مشخصات الکتریکی و حرارتی و مکانیکی هر کنتاکتور بصورت زیر می باشد :
الف- ولتاژ نامی :
هر کنتاکتور ممکن است در شبکه های مختلفی از ولتاژ و فرکانس کار کند لذا باید قطعات آن از نظر عایق تحمل ولتاژ و فرکانس شبکه مزبور را داشته باشد.
ب- جریان نامی :
حجم و شکل هر کنتاکتور مانند هر کلید دیگر باید متناسب باشد با جریانی که آن را قطع و وصل می کند و نیز نوع بار مهم است. به عنوان مثال کنتاکتور ۶۳ آمپری برای یک بار القایی می تواند جریان بیشتری را برای یک بار اهمی مثلاً روشنایی تحمل کند. به همین دلیل شرایط کار در ۴ حالت زیر استاندارد شده است : RC1­ , RC2 , RC3 , RC4
RC1 :
این نوع شامل کلیه دستگاههای غیرالقایی می باشد.
نوع RC2 :
این حالت برای راه اندازی الکتروموتور با رتور سیم پیچی می باشد. جریان راه اندازی تقریباً دو برابر جریان نامی موتور است البته مقدار دقیق جریان بستگی به مقاومت مدار رتور دارد.
در حالت بازشدن تیغه ها جریان نامی موتور را قطع می کنند. ولتاژی که در دو سرآنها بوجود می آید تابعی است از نیروی ضدمحرکه موتور و حالت قطع به اسانی انجام می پذیرد.
نوع RC3 :
این حالت برای راه اندازی الکتروموتورهای القایی رتور قفسی است. در حالت بسته شدن کنتاکتور جریان راه اندازی الکتروموتور را تحمل می کند و در زمان بازشدن جریان نامی که توسط موتور از شبکه کشیده می شود را قطع می کند.
نوع RC4 :
این حالت شامل راه اندازی، ترمز، تغییر جهت جریان در الکتروموتورهای رتور قفسی است. در این حالت نیز جریان در زمان بسته شدن کنتاکتور جریان راه اندازی ۵ تا ۷ برابر جریان موتور است. قطع در این نوع تقریباً مشکل است.
الف- انرژی مصرفی :
ب- انرژی مصرفی :
سیم پیچ بوبین هر کنتاکتور را می توان برای کار با ولتاژهای مختلف طراحی نمود از ۱۲ ولت جریان مستقیم تا ۵۰۰ ولت جریان متناوب. البته اگر جریان مستقیم به سیم پیچ داده شود، بهتر است.
به همین علت در بعضی از کنتاکتورها با استفاده از یکسوکننده ها جریان متناوب شبکه را برای مصرف سیم پیچ کنتاکتور یکسو می کنند.
به علت عبور جریان از سیم پیچ بوبین، کنتاکتور بصورت یک مصرف کننده، مقداری توان مصرف کرده و گرم می شود. یک کنتاکتور خوب باید دارای مصرف داخلی کم باشد. برای کم کردن مصرف کنتاکتور می توان از یک مقاومت که بعد از عمل کردن کنتاکتور با سیم پیچ بوبین سری می شود استفاده کرد.
پ- درجه حرارت کار :
کنتاکتور نیز مانند دیگر وسایل، در درجه حرارت معینی از محیط باید قابل کارکردن باشد. معمولاً درجه حرارت کار کنتاکتور از ۲۰- تا ۶۰+ سانتی گراد است.
ت- جریان حرارتی :
حداکثر جریانی که در اثر عبور آن کنتاکتور خراب می شود را جریان حرارتی کنتاکتور می نامند.
و این جریان غیر از جریان نامی کنتاکتور است. جریان مزبور نیز روی کنتاکتورها نوشته می شود.
ث- تعداد تیغه ها :
همانطور که گفته شد هر کنتاکتور دارای دو قسمت تیغه است. تیغه های اصلی که معمولاً سه تیغه باز برای قطع و وصل مدار قدرت و تعدادی تیغه های فرعی باز و بسته که در اصطلاح به آن تیغه های کمکی گویند.
ج- زمان قطع و وصل.
عمر مکانیکی :
هر کنتاکتور پس از زمان معینی فرسوده و غیرقابل استفاده می گردد. این زمان را عمر مکانیکی کنتاکتور می نامند.
د- نرم (استاندارد) کنتاکتور :
کنتاکتورها با استاندارهای مشخصی ساخته می شوند که استانداردها بصورت زیر با علامتهای اختصاری آمده است :
آشنایی با قطع کننده های ولتاژ (سکسیونرها) و کلیدهای قدرت (دیژنکتورها).
به طور کلی کلیدها وسیله ارتباط سیستمهای مختلف هستند و باعث عبور و یا قطع جریان می شود. کلید در حالت بسته یعنی عبور جریان و یا در حالت باز یعنی قطع جریان دارای مشخصاتی به شرح زیر می باشد :
۱-در حالت قطع دارای استقامت الکتریکی کافی و مطمئن در کل قطع شدگی است.
۲-در حال وصل باید کلید در مقابل کلیه جریانهایی که امکان عبور آن در مدار هست حتی جریان اتصال کوتاه مقاوم و پایدار باشد و این جریانها و اثرات ناشی از آن نباید کوچکترین اختلالی در وضع کلید و هدایت صحیح جریان به وجود آورد. بدین ترتیب باید کلید فاز قوی در مقابل اثرات دینامیکی و حرارتی جریانها مقاومت باشد. البته برای اینکه ساختمان کلید ساده تر و از نظر اقتصادی مقرون به صرفه باشد. اغلب استقامت الکتریکی و دینامیکی و حرارتی کلید را توسط دستگاههای حفاظتی تا حدودی محدود می کنند کلیدهای فشار قوی را می توان برحسب وظایفی که به عهده دارند به انواع مختلف زیر تقسیم نمود :
۱- کلید بدون بار یا سکسیونر
۲- کلید قابل قطع زیر بار یا سکسیونر قابل قطع زیر بار
۳- کلید قدرت یا دیژنکتور
۱-سکسیونر ساده :
سکسیونر وسیله قطع و وصل سیستمهایی است که تقریباً بدون جریان هستند به عبارتی دیگر سکسیونر قطعات و وسایلی را که فقط زیر ولتاژ هستند از شبکه جدا می سازد. برحسب این تعریف در صورتی که اختلاف پتانسیای بین دو کنتاکت سکسیونر ظاهر نشود قطع آن بلامانع است. همینطور وصل سکسیونر که بین دو کنتاکت آن تفاوت پتانسیلی موجود نباشد مجاز خواهد بود از آنچه گفته شد چنین نتیجه می شود که در واقع سکسیونر یک ارتباط دهنده یا قطع کننده مکانیکی بین سیستمها است. سکسیونر باید در حالت بسته یک ارتباط مکانیکی محکم و مطمئن در کنتاکت هر قطب برقرار سازد و مانع افت ولتاژ گردد لذا باید مقاومت عبور جریان در محدوده سکسیونر کوچک باشد تا حرارتی که در اثر کار مداوم در کلید ایجاد می شود از حد مجاز تجاوز نکند.
این حرارت توسط ضخیم کردن تیغه و بزرگ کردن سطح تماس در کنتاکت و فشار تیغه در کنتاکت دهنده کوچک نگه داشته می شود در ضمن باید سکسیونر طوری ساخته شود که در اثر جرم و وزن تیغه یا فشار باد و برف و غیره خود به خود بسته نشود.
موارد استعمال سکسیونرها :
به منظور حفاظت اشخاص و متصدیان مربوطه در مقابل برق زدگی بکار برده می شود به این جهت طوری ساخته می شوند که در حالت قطع شدگی یا چسبندگی به طور واضح وآشکار قابل رویت باشند. یعنی در هوای آزاد انجام گیرند. از‌ آنجایی که سکسیونر باعث بستن یا بازکردن مدار الکتریکی نمی شود (برای بازکردن و بستن هر مدار الکتریکی فشار قوی احتیاج به یک کلید دیگری خواهیم داشت به نام) کلید قدرت که قادر است مدار را تحت هر شرایطی باز کند سکسیونر وسیله ای است برای ارتباط کلید قدرت به شین و یا هر قسمت دیگری از شبکه که دارای پتانسیل است. سکسیونر را می توان از نظر ساختمانی به انواع مختلف زیر تقسیم نمود :
۱- تیغه ای ۲- کشویی ۳-دورانی ۴-قیچی ای.
برای جلوگیری از قطع و وصل بی موقع و در زیر بار سکسیونر معمولاً بین سکسیونر و کلید قدرت چفت و بست مکانیکی یا الکتریکی به نحوی برقرار می شود که هنگام وصل بودن کلید قدرت سکسیونر را به هیچ وجه نتوان قطع یا وصل کرد.
مشخصات مهم یک سکسیونر که گویای مشخصات فنی و استقامت الکتریکی و دینامیکی است.
ولتاژ نامی Vn
جریان نامی In
جریان اتصال کوتاه ضربه ای Is
جریان اتصال کوتاه کوتاه مدت (معمولاً ۱ تا ۳ ثانیه) Ith
سکسیونرهای قابل قطع زیربار :
به علت اینکه در بیشتر شبکه ها و پستهای کوچک کلید قدرت و سکسیونر و وسایل اضافی مربوط به چفت و بست آنها مبالغ زیادی از مخارج و هزینه کل تاسیسات را شامل می گردد و به علت اینکه در اغلب موارد نصب کلید قدرت با مزایای قطع و وصل سریع آن حتماً لازم و ضروری نیست کلید سکسیونر قابل قطع زیر بار طرح و ساخته شد سکسیونر قابل قطع زیر بار در ضمن اینکه باید وظیفه یک سکسیونر را انجام دهد یعنی در ضمن برداشتن ولتاژ یا قطع شدگی قابل رویت و مطمئن در مدار شبکه فشار قوی بوجود آورد باید قادر باشد مانند یک دیژنکتور نیز قدرتها و جریانهای کوچک الکتریکی را نیز قطع کند لذا هر سکسیونر قابل قطع زیر بار باید دارای وسیله ای برای قطع فوری جرقه باشد. سکسیونر قابل قطع زیربار اصولاً دارای قدرت وصل بسیار زیاد است و می تواند شدت جریانهایی با شدت ۲۵ تا ۷۵ کیلوآمپر را به خوبی وصل کند.
ولی قدرت قطع آن کم واز ۴۰۰ تا ۱۵۰۰ آمپر تجاوز نمی کند لذا نتیجه می شود که این کلیدها برای قطع جریان اتصال کوتاه ساخته نشده و مناسب هم نمی باشند. در صورتی می توان از سکسیونر قابل قطع زیربار در شبکه های فشار قوی استفاده کرد که مجهز به فیوزهای فشارقوی باشند فیوزهای فشار قوی در ولتاژ ۲۰ کیلو ولت دارای قدرت قطعی در حدود ۴۰۰ مگاولت آمپر می باشند که جریان اتصال را در همان مراحل ابتدایی قطع می کنند از آنچه گفته شد نتیجه می شود که سکسیونر قابل قطع زیربار فقط برای قطع جریان نامی شبکه مناسب است و جریان اتصال کوتاه را فیوز قطع می کند نه کلید البته باید متذکر شد که پس از قطع جریان اتصال کوتاه توسط سوختن فیوز ساچمه فیوز به طور خودکار باعث قطع سکسیونر به صورت سه فازه خواهد شد چون سکسیونر قابل قطع زیربار باید مدارهای حاصل جریان را قطع و وصل بکند. بنابراین بایستی مجهز به محفظه احتراق بوده که در داخل آن محفظه احتراق جرقه و قوس الکتریکی حاصل از قطع و وصل جریان را خاموش کند.
به محض فرمان قطع کلید تیغه اصلی از کنتاکت تیغه اصلی از کنتاکت ثابت کلید جدا می شود و قوس الکتریکی که ایجاد می گردد در اثر دو عامل زیر خاموش می گردد :
۱- در اثر حرارت قوس الکتریکی مقداری گاز از سطح داخلی عایق متصاعد شده که باعث خنک شدن جرقه شده و عمل خاموش شدن جرقه را سهل تر می سازد.
۲- فاصله بین دو کنتاکت دارای جرقه در اثر بازشدن فنر در داخل محفظه احتراق به سرعت زیاد شده این اضافه فاصله باعث قطع جرقه می گردد.
کلید قدرت یا دیژنکتور :
دیژنکتور کلیدی است که می تواند در موقع لزوم جریان عادی شبکه و در موقع بروز خطا جریان اتصال کوتاه و یا جریان اتصال زمین و یا هر نوع جریانی با هر اختلاف فازی را سریعاً قطع کند در اتصال سه فاز که یک حالت خاصی از بار متعادل است با اینکه فرمان قطع به هر سه قطب کلید یکجا و در یک زمان داده می شود ولی قطع هر سه فاز تقریباً در فاصله یک چهارم پریود که معمولاً از نظر زمانی بسیار کوتاه است انجام می گیرد. در انتخاب دیژنکتور باید به نکات زیر توجه شود :
۱- ولتاژ نامی کلید که معمولاً برابر ولتاژ شبکه ای است که کلید در آن نصب می شود و می تواند حدود ۱۵% هم از ولتاژ شبکه کوچکتر باشد.
۲- جریان نامی کلید که مساوی با بزرگترین جریان کار معمولی شبکه است.
۳- قدرت نامی قطع دیژنکتور که باید با قدرت اتصال کوتاه در محل کلید مطابقت کند در ضمن با همین قدرت قطع قدرت وصل نامی دیژنکتور نیز عملاً مشخص می شود زیرا برحسب تعریف VDE باید قدرت وصل کلید در حدود ۵/۲ برابر قدرت قطع آن باشد.
انواع دیژنکتورها :
۱- روغنی ۲-کم روغن ۳-هوایی ‍(هوای فشرده) ۴-گازی(گاز SF6)
کلیدهای با قطع و وصل خودکار :
در وسایل خانگی، صنعتی و تجاری کلیدهای بسیاری یافت می شوند که فرمان قطع خود را از سیستم یا وسیله دیگری دریافت می کنند و در نتیجه وسایل متصل به مداری را بطور اتوماتیک کنترل می کنند برخی از انواع مهم این کلیدها را در ذیل تشریح می کنیم :
۱-کلیدهای ساعتی : این کلیدها برای قطع و وصل اتوماتیک مدارها در ساعت معین بکار گرفته می شوند. برخی از این مدارها نظیر چراغهای ویترینها و چراغ خیابانها می باشند. در انتخاب این نوع کلیدها لازم است به جریان مدار وظرفیت کلیدها که برحسب آمپر داده می شود توجه شود.
این کلیدها ساختمانهای مختلف دارند. در یک نوع آن از موتور کوچکی که از نوع سنکرون انتخاب می شود استفاده می شود که البته در صورت قطع برق از کار می ایستد. در نوع دیگر ساعت مجهز به فنر است که توسط موتور برقی کوک می شود و در صورت قطع برق بکار خود ادامه می دهد و دچار اختلال نمی گردد. در وصل کلیدهای ساعتی حتماً باید فیوزی برای حفاظت موتور و فیوز دیگری برای حفاظت مدار بکار برد.
۲-کلید فشاری : این کلیدها از تغییرات فشار فرمان می گیرند و برای کنترل موتورهایی که تلمبه و یا کمپرسورها را می گردانند یا برای قطع توربین های بزرگ در صورت کم شدن فشار روغن یاتاقانها مورد استفاده قرار می گیرند.
۳-کلید حدی (محدود کننده مامیکر و سوئیچ) : این کلیدها از حرکت و برخورد ماشین با وسایل متحرک به نقطه ثابتی فرمان می گیرد و حرکت آنها را کنترل می کند. این کلیدها در جرثقیل ها و آسانسورها در مکانی که حداکثر تغییر مکان مجاز دستگاه را معین می کند نصب می شود و دستگاه در برخورد به دسته آن مدار را قطع می کند و سبب توقف می گردد. از این کلید در مدارهای فرمان برای کنترل و محدود کردن حرکت قسمتهای مکانیکی، تغییر جهت حرکت و در تایمرها و شناورها و … بعنوان کلید قطع یا وصل استفاده می شود. ساختمان این کلید مانند شستی بوده و توسط سیستم متحرک به آن نیروی فشار وارد شده و یا کشیده می شود. به همین دلیل سر اهرم متحرک آن بفرمهای مختلف ساده، قرقره ای، گلوله ای و … می باشد. در میکروسوئیچ نیز مانند شستی، یا برطرف شدن نیروی مکانیکی وارده به اهرم آن مجدداً انرژی ذخیره در فنر میکروسوئیچ آن را به حالت اول برمی گرداند.
۴-کلیدهای حرارتی : این کلیدها از تغییرات درجه حرارت فرمان قطع و وصل می گیرند و در وسایل مثل سیستم حرارتی مرکزی و یا یخچال و اتوبرقی مورد استفاده قرار می گیرند.
بی متال ‍(رله حرارتی) :
جهت حفاظت موتور در برابر اضافه بار از قطع کننده حرارتی (بی متال) استفاده می شود اساس کار رله حرارتی مانند فیوز حرارتی بی متال می باشد. رله حرارتی دارای سه کنتاکت ورودی و سه کنتاکت خروجی می باشد که در مدارات قدرت و بین کنتاکتور و موتور قرار می گیرد دور هر بی متال چند دور سیم مقاومت دار پیچیده شده که از آن جریان عبور می کند. در اثر عبور جریان از سیم بی متالها گرم شده و خم می شوند. مقدار خم شدن بی متال بستگی به درجه حرارت و همچنین مقدار جریان عبوری از موتور دارد. گرمای حاصل بیش از حد مجاز بی متال را خم کرده و روی کنتاکت کناری که در مدار فرمان قرار می گیرد اثر گذاشته و تیغه وصل را قطع نموده و می تواند تیغه به کنتاکت دیگری وصل شده و لامپ خبر را روشن و آژیری را به صدا درآورد. روی هر بی متال پیچ تنظیم جریان نیز وجود دارد که توسط آن می توان جریان را به اندازه لازم تنظیم نمود ‍(با توجه به جریان نامی موتور). پس از عمل کردن بی متال کنتاکتور قطع شده و بی متال مجدداً سرد و به حالت اول خود بازمی گردد، در اغلب بی متالها کنتاکت باز شده و پس از سردشدن بی متال به حالت اول خود باز نمی گردد و بسته نمی شود و بایستی با فشار دادن دکمه ای که روی بی متال قرار دارد مجدداً به حالت وصل درآورد.
در بعضی رله های حرارتی حالت MAN و AUTO وجود دارد که با قراردادن اهرم روی AUTO پس از عمل کردن رله، مجدداً بعد از مدتی به حالت اولیه درمی آید.
تایمر(کلید زمانی) :
تایمر کلیدی است مرکب که مانند شستی یا میکروسوئیچ به مدار کنتاکتور فرمان می دهد. فرق تایمر با شستی یا میکروسوئیچ در نوع فرمان دادن آن می باشد شستی بوسیله دست فرمان می گیرد، اما تایمر پس از گذشت مدت زمانی که روی آن تنظیم می شود بطور خودکار فرمان می دهد. بنابراین می توان گفت که تایمر یک شستی اتوماتیک است. تایمر جزء کلیدهای مرکب است، چون از انرژی واسطه ای برای قطع و وصل استفاده می کند. تایمر موارد استعمال زیادی در صنعت دارد، یکی از مهمترین مورد استعمال تایمر در راه اندازی موتورهای سه فازه بصورت ستاره و مثلث می باشد.
تایمرها در انواع مختلف ساخته می شوند که به شرح چند نوع آن می پردازیم :
۱-تایمر موتوری (رله زمانی موتوری) : این تایمر دارای یک موتور کوچک جریان متناوب یک فاز می باشد که با عبور جریان به حرکت درآمده و سرعت آن توسط چرخ دنده هایی کم شده و صفحه دیسک مانندی که روی آن یک زایده قرار دارد را به حرکت در می آورد. (این صفحه در روی محور موتور قرار دارد) با رسیدن این زایده به میکروسوئیچ داخل تایمر باعث فشار به اهرمی شده و کنتاکتهای دیگر را قطع می نماید. زمان عمل تایمر بستگی به محل صفحه و در حقیقت بستگی به فاصله زایده روی صفحه تا اهرم میکروسوئیچ دارد. لذا برای تنظیم زمان تایمر می توان پیچی که روی تایمر می باشد و مدرج است را برای زمان دلخواه تنظیم نمود.
۲-تایمر الکترونیکی : از این تایمر برای تنظیم زمانهای کمتر از ثانیه تا چند ثانیه استفاده می شود. ساختمان این تایمر از مدارات و اجزاء الکترونیکی استفاده شده و با شارژ یا شارژ شدن یک خازن، بوبین رله تحریک می شود. در ساده ترین نوع تایمر الکترونیکی یعنی در تایمر نوع خازنی رله هنگامی وصل می شود که خازن شارژ شده و ولتاژ دو سر آن برابر ولتاژ وصل رله شود (پس از وصل رله بار ذخیره شده در خازن روی مقاومتی که توسط کنتاکت باز رله به دو سر خازن وصل می شود) تخلیه می گردد. در این مدار با تغییر ظرفیت خازن می توان تایمر را تنظیم نمود.
۳-تایمر پنیوماتیک : این تایمر دارای یک کپسول هوا و یک بوبین (سیم پیچ) با هسته آهنی می باشد. وقتی که بوبین تحریک شود، هسته متحرک را جذب می نماید، در اثر جذب هسته متحرک اهرم بالای آن قطعه ای را که بشکل دم آهنگری است فشار خواهد داد و هوای داخل دم از طریق سوپاپ خارج می شود. وقتی که بوبین از تحریک خارج شود. فنر دم را منبسط می کند. دم از طریق سوپاپ تنظیم از هوا پر می شود. انبساط دم در رابطه با پیچ تنظیم فرق می کند. کار این تایمر شبیه تایمر موتوری می باشد با این تفاوت که تایمر موتوری پس از وصل موتور آن به ولتاژ شروع بکار کرده و بعد از زمان تعیین شده برای آن عمل می کند ولی تایمر پنیوماتیک پس از قطع بوبین آن از ولتاژ شروع به کار کرده و بعد از زمان تعیین شده برای آن عمل می کند.
۴-تایمر حرارتی (رله زمانی حرارتی) : این تایمر دارای بی متال می باشد و زمانیکه جریان وارد آن می شود گرم شده و پس از مدتی عمل قطع یا وصل را انجام می دهد. دقت این تایمر زیاد نیست (سرما و گرمای محیط روی آن اثر می گذارد) به همین جهت از آن در برق صنعتی استفاده نمی کنند، ولی بصورت رله زمانی و راه پله در سیم کشی ساختمان مور داستفاده قرار می گیرد.
تایمرها بطور کلی به دو نوع تقسیم بندی می شوند :
الف- تایمر با تاخیر در وصل (ON – DELAY) به این نوع تایمر باید انرژی داده شود و سپس رله عمل کرده و کنتاکتی را باز یا بسته نماید. مانند رله زمانی موتوری.
ب- تایمر با تاخیر در قطع (OFF – DELAY) این تایمر بعد از قطع انرژی عمل کرده و کنتاکتی را باز یا بسته می نماید. مانند رله زمانی پنیوماتیکی.
زمان تعیین شده در تایمرها خیلی دقیق بوده و حدود دهم ثانیه می باشد.
تایمرها را همواره بایستی همراه کنتاکتور بکار برد و هیچ وقت نباید از آن بجای کلید استفاده نمود.
آشنایی با مدارهای فرمان
بهره برداری مطمئن و بی وقفه از تاسیسات الکتریکی و مراکز تولید نیرو و تامین انرژی الکتریکی مورد نیاز تجهیزات برقی کارخانه جات صنعتی و مراکز اقتصادی تا حدود زیادی به خصوصیات و ویژگی ها و طرز عمل کلیدها و وسایل کنترل مدارها بستگی دارد.در مدارهای الکتریکی وسایل مختلفی به کار میرود که از مهمترین انها کنتاکتور یا کلید مغناطیسی است .استفاده از این کنتاکتور در مدارهای کنترل تنوع طراحی های مختلف را به وجود می آورد.برای طراحی مدارهای کنترل و کار با آنها باید وسایل تشکیل دهنده آن را به طور کامل شناخت و به اصول ساختمان و مورد استفاده این وسایل آشنا شد.وسایلی که در مدارهای فرمان به کار میروند به این قرار است:۱_کنتاکتور(کلید مغناطیسی)۲_شستی استاپ استارت۳_رله الکتریکی۴_رله مغناطیسی۵_لامپ های سیگنال ۶-فیوزها ۷_لیمیت سویچ۸_کلیدهای تابع فشار ۹_کلیدهای شناور۱۰_چشم های الکتریکی(سنسورها)۱۱_تایمر و انواع آن۱۲_ترموستات۱۳_کلیدهای تابع دور
در مورد کنتاکتور میتوان گفت که یک کلید مغناطیس است که وقتی ولتاژ مورد نظر به آن اعمال میشود یک سری کنتاکت(یا کلید)باز را بسته و یک سری کنتاکت بسته را باز میکند.که با استفاده از این خاصیت مدارهای مختلفی میتوان مدارهای زیادی رو طراحی کرد.ساختمان کنتاکتور:این کلید از دو هسته به شکل E یا U که یکی ثابت و دیگری متحرک است و در میان هسته ثابت یک بوبین یا سیم پیچ قرار دارد،تشکیل شده است. وقتی بوبین به برق وصل میشود با استفاده از خاصیت مغناطیسی ،نیروی کششی فنر را خنثی میکند و هسته فوقانی را به هسته تحتانی متصل کرده باعث میشود که تعدادی کنتاکت عایق شده از یکدیگر به ترمینال های ورودی و خروجی کلید متصل میشود و یا باعث باز شدن کنتاکت های بسته کنتاکتور بسته کنتاکتور گردد.در صورتی که مدار تغذیه بوبین کنتاکتور قطع شود ،در اثر نیروی فنری که داخل کلید قرار دارد هسته متحرک دباره به حالت اول باز میگردد.مزایای استفاده از کنتاکتورکنتاکتورها نسبت به کلیدهای دستی صنعتی مزایایی به شرح زیر دارند:۱_مصرف کننده می تواند از راه دور کنترل می شود.۲_مصرف کننده میتواند از چند محل کنترل شود.۳_امکان طراحی مدار فرمان اتوماتیک برای مراحل مختلف کار مصرف کننده وجود دارد.۴_سرعت قطع و وصل کلید زیاد و استهلاک آن کم است.۵_از نظر حفاظتی مطمئن ترند و حفاظت مطمئن تر و کامل تری دارند.۶_عمر موثرشان بیشتر است.۷_هنگام قطع برق،مدار مصرف کننده نیز قطع می شود و به استارت مجدد پیدا میکند؛در نتیجه از خطرات وصل ناگهانی دستگاه جلو گیری می کند.کنتاکتور برای جریان های AC وDC ساخته میشود.تفاوت این دو کنتاکتور در این است که در کنتاکتور های AC از یک حلقه اتصال کوتاه برای جلوگیری از لرزش حاصل از فرکانس برق استفاده می شود. نیروی کششی یک مغناطیس الکتریکی جریان متناوب،متناسب با مجذور جریان عبوری از آن و در نتیجه متناسب با مجذور اندکسیون مغناطیسی است.چون مقدار جریان لحظه ای با توجه به رابطه i=ImaxSIN wt تعقیر میکند،نیروی کششی مغناطیسی نیز برابر باF=Fmax sin wt (سینوس توان ۲ دارد که نمیشد تایپ کنی)خواهد شد و تعداد دفعاتی که این نیرو ماکزیمم و صفر می شود، به اندازه دو برابر فرکانس شبکه خواهد گردید.در نتیجه ،در لحظاتی که مقدار نیروی کششی بیشتر از نیروی مقاوم فنر های کنتاکتور باشد ،هسته کنتاکتور جذب می شود و در لحظاتی که مقدار نیروی کششی کمتر از مقدار نیروی فنر ها شود،هسته متحرک هسته نیز آزاد شده و به محل اول خود باز می گردد.بدین ترتیب در هسته متحرک لرزش و صدا ایجاد خواهد شد این نوسانات را می توان به وسیله یک حلقه بسته در سطح قطب ها جا سازی شده و حدود نصف تا ۳/۲ سطح هر قطب را پوشانده است از بین برد و لرزش آن را برطرف کرد. عمل این حلقه آن است که مانند سیم پیچ ثانویه ترانسفورماتوری که در حالت اتصال کوتاه قرار گرفته است،از آن جریان القایی عبور میکند و باعث ایجاد فوران مغناطیسی فرعی در مدار هسته می شود. این فوران فرعی با فوران اطلی اختلاف فاز دارد و در زمانی که نیروی کششی حاطل از فوران اطلی صفر باشد ،نیروی کششی حاصل از فوران اطلی ماکزیمم خواهد بود و در حالتی که نیروی حاصل از فوران ماکزییم باشد ،این نیرو صفر خواهد بود و چون جمع این دو نیرو به هسته متحرک اثر میکند،نیروی کششی در هر لحظه از نیروی مقاومت فنر بیشتر خواهد بود.ولتاژ تغذیه بوبین متفاوت است و از ۲۴ تا ۳۸۰ولت ساخته می شود. در اکثر کشورهای صنعتی برای حفاظت بیشتر ،تغذیه بوبین کنتاکتور را زیر ولتاژ حفاظت شده (۶۵ولت)انتخاب میکنند. و یا برای تغذیه مدار فرمان ،ترانسفورماتور مجزا کننده به کار می برند.شناخت مشخصات کنتاکتورنوع کنتاکتوربا توجه به نوع مصرف کننده و شرایط کار ،کنتاکتورها دارای قدرت و جریان عبوری مشخصی برای ولتاژهای مختلف هستنند. بنابراین باید به جدول و مشخصات کنتاکتور توجه کافی مبذول کرد و انخاب کنتاکتو.را منطبق بر مشخصات مورد نیاز قرار داد.برای اتصال مصرف کننده به شبکه باید از کلید یا کنتاکتوری با مشخصات مناسب استفاده کرد که کنتاکت های آن تحمل جریان راه اندازی و جریان دائمی را داشته باشد و همچنین در صورت اتصال کوتاه،جریان لحظه ای زیادی که از مدار عبور می کند. و یا جرقه ای که هنگام اتصال مدار ایجاد می شود ،صدمه ای به کلید نزند.بدین منظور و برای این که بتوانیم پس از طراحی مدار ،کنتاکتور مناسب را برای اتصال مصرف کننده به شبکه انتخاب کنیم،باید با مقادیر نامی مربوط به کنتاکتور آشنا شویم.برای انتخاب کنتاکتور در قدرت های مختلف می توان از جدول هایی استفاده کرد.
شستی استاپ استارت و سلکتور سوئیچ های فرمانشستی ها از جمله وسایل فرمان هستنند که تحریک آنها به وسیله دست انجام میگیرد و در انواع مختلف و برای کاربردهای متفاوت طراحی می شوند.شستی که پس از تحریک،دو کنتاکت وصل را قطع میکنند استاپ(قطع) و شستی هایی که پس از تحریک دو کنتاکت،قطع را وصل می کنند شستی استارت (وصل) نامیده می شوند. شستی های که هر دو عمل را در یک زمان انجام می دهند،به شستی استارت استاپ یا دوبل معروف هستنند یعنی با فشار کلید دو کنتاکت باز بسته و دو کنتاکت بسته باز می شود.تصویر چند کلید استاپ استارت و در یکی از عکس ها یک کاربرد اونو به نمایش گذاشته شده در ضمن در عکسی که سه کلید دارد کلید وسطی دوبل می باشد.رله اضافه بار(حرارتی یا بیمتال)دستگاه های الکتریکی را باید در مقابل خطرات و خطاهای احتمالی حفاظت کرد.یکی از راه های حفاظت موتورهای الکتریکی ،استفاده از رله حرارتی و رله مغناطیسی است رله حرارتی موتور را در مقابل اضافه بار حفاظت میکند.رله اضافه باری جهت کنترل جریان موتورهای الکتریکی بکار میرود و یک نوع رله حفاظتی است.این رله از دو فلز مختلف الجنس که ضرایب انبساط طولی مختلفی دارند تشکیل شده است. به اطراف این دو فلز به هم چسبیده ،یک رشته سیم حامل جریان الکتریکی پیچیده شده را طوری تنظیم کرد که در اثر افزایش کم جریان ،دستگاه مربوطه بدون دلیل و به سرعت قطع نشود با استفاده از این منحنی ها همچنین می توان آنرا طوری تنظیم کرد که زمان قطع زیاد شده و عبور جریان اضافی موجب صدومه به دستگاه نشود.شرایط کار این رله ها از(۲۰-)درجه تا (۶۰+)درجه سانتی گراد متغیر است .رله مغناطیسیرله مغناطیسی نیز برای کنترل جریان به کار می رود . اصول کار این رله بر اساس پدیده مغناطیس پایه گذاری شده است .از این رله برای قطع جریان های اتصال کوتاه استفاده می شود.می دانیم که یک اتصال کوتاه باید سریع قطع شود بنابر این در چنین موقعیتی نمی توان از رله اضافه باری(حرارتی)استفاده نمودچون گرم شدن بیمتال رله به یک زمان نسبتا طولانی نیاز دارد.این رله از یک هسته مغناطیسی که اطراف آن چند دور سیم پیچیده شده تشکیل گردیده است.عبور جریان اتصال کوتاه باعث مغناطیس شدن و جذب اهرم قطع می شود.این رله را به طور مجرا به ندرت مورد استفاده قرار می دهند و در کلیدهای اتوماتیک از آنها بهمراه رله های حرارتی بهره می گیرند.
لامپ های سیگناللامپ های علامت دهنده یا لامپ های سیگنال در کلیه دستگاه های صنعتی و تابلو های توزیع و تابلو فرمان به کار میروند. نوع استفاده از این لامپ متفاوت است .این لامپ به عنوان لامپ خبر استفاده می شود و میتوان روشن بودن،خاموش بودن و یا عیب دستگاه و…را نشان دهد.چراغ های مورد استفاده در مدار فرمان ،یک چراغ کم قدرت (۲/۱تا۵وات)است که با ولتاژهای مختلف از ۲۴تا ۲۲۰ولت کار میکند.این چراغ ها معمولا در سه رنگ استاندارد قرمز،سبزو نارنجی ساخته می شوند.برای مثال در کارخانه ای که تعداد زیادی موتور در آن واحد مشغول به کار بوده و فواصل آنها تا تابلوی کنترل نسبتا زیاد باشد،از چراغ قرمزی که توسط کنتاکت بازی از کنتاکتور اصلی موتور روشن می شود استفاده می کنند.با استفاده از کنتاکتهای باز کنتاکتور می توان چراغ سبزی را که نمایشگر حالت خاموشی مدار است روشن نمود.در نقشه ها برای نمایش چراغ سیگنال از حرف h استفاده می شود.تصویر چند لامپ سگنال از جلو و ساختمان آنفیوزهادر کلیه تاسیسات الکتریکی برای جلوگیری از صدمه دیدن و معیوب شدن وسایل و نیز برای قطع کردن دستگاه های معیوب از شبکه که بر اثر عئامل مختلف از قبیل نقصان عایق بندی،ضعف استقامت الکتریکی یا مکانیکی و ازدیاد بیش از حد جریان مجاز(اتصال کوتاه)وسایل حفاظتی مختلف به کار می رود.این وسایل باید طوری انتخاب شوند که در اثر اضافه بار یا اتصال کوتاه در کوتاهترین زمان ممکن و قبل از اینکه صدمه ای به سیم ها و شبکه الکتریکی شبکه برسد،مدار قسمت معیوب را قطع کنند.یکی از این وسایل حفاظتی فیوز است فیوزها از نظر زمان قطع بر حسب منحنی ذوب سیم حرارتی داخل انها به دو نوع کند کار و تند کار تقسیم میشوند.فیوز های تند کار زمان قطع کمتری نسبت به فیوزهای کند کار دارندو به همین دلیل در مصارف روشنایی استفاده می شوند.فیوز های کند کار دارای زمان قطع طولانی تری هستنند و در نتیجه برای راه اندازی موتورهای الکتریکی به کار میروند.تحمل جریان راه اندازی موتور در حدود ۳تا ۷ برابر جریان نامی است که بر روی کلیه فیوزها جریان نامی انها نوشته شده میشود.این جریان کمتر از جریان ماکزیمیم تحمل فیوز است.فیوز در انواع فشنگی ،اتوماتیک(آلفا)،مینیاتوری،بکٌس،کاردی (تیغه ای)،شیشه ای یا کارتریج و فیوز های فشار قوی ساخته می شوند.معمولا فیوزهای که در مدار قدرت به کار میروند،مدار کنتاکتور را در مقابل اتصال کوتاه محافظت میکند؛یعنی در واقع حفاظت سیم های رابط مدار را نیز بر عهده دارد.بنابراین در مدارهایی که مثلا فیوز ۲۵ آمپری به کار می رود،ممکن است در مدار فرمان آنها از سیم یک یا یکو نیم استفاده شود.پس لازم است مدار فرمان با فیوز جداگانه ای حفاظت شود.فیوزهای اتوماتیک یا آلفا نوعی فیوز خودکار است که عبور جریان بیش از حد مجاز از آن باعث قطع مدار می شود؛اما دوباره می توان شستی آن را به داخل فشار داد تا ارتباط برقرار شود.بعضی از فیوزهای خودکار دو عمل جریان زیاد و بار زیاد در مدار کنترل می کنند؛اما پس از قطع شدن ،باید پس از مدت کمی دباره شستی مربوطه را فشار داد تا مدار وصل شود.در فیوز های اتوماتیک دو عنصر مغناطیسی و حرارتی وجود دارد که قسمت مغناطیسی آن اتصال کوتاه یا جریان زیاد و قسمت حرارتی آن (بیمتال) بار زیاد (افزایش جریان تدریجی) را قطع می کند.کلید مینیاتوری نوعی فیوز اوتوماتیک است که از نظر ساختمان داخلی با فیوز آلفا شباهت دارد و از سه قسمت رله مغناطیسی (رله جریان زیاد زمان سریع)،رله حرارتی یا رله بیمتال (رله جریان زیاد تاخیری)و کلید تشکیل شده است.این مجموعه را نیز کلید موتور مینامند.این کلیدها در دو نوع L و G ساخته شده است.نوع Lدر مصارف روشنایی به کار می رود و تند کار است(LIGHT) و نوع G در راه اندازی وسایل موتوری مورد استفاده قرار می گیرد و کند کار است. این کلید ها در انواع تک فاز دو فاز و سه فاز ساخته می شوند.کلید های محدود کننده
کلید محدود کننده(LIMIT SWITCH) که گاهی میکرو سویچ نیز نامیده می شوند،کلیدی است که برای قطع و وصل یک حرکت خطی یا دورانی و یا تعویض جهت دوران یک متحرک به کار می رود.این کلید اهرمی دارد که وقتی دسته متحرک به آن برخورد می کند کنتاکتی را قطع می نماید. کنتاکت مذبور خود عامل فرمانی است برای ماشینی که هدف کنترل آنست.چنانچه از اسم این کلید بر می اید کلید یاد شده برای محدود کردن حرکت متحرک ها به کار می رود.مثلا در یک چرثقیل سقفی که در چند جهت حرکت می کند وقتی متحرک به انتهای هر قسمت از مسیر خود میرسد،یک کلید محدود کننده مدار رفت را از کار انداخته و مدار برگشت را مهیا میسازد.مطلب مهمی که باید در کاربرد این کلید ها در نظر گرفت وضعیت کنتاکت ها در موقع وارد آمدن نیرو به اهرم آنها است.کارخانه های سازنده این وضعیت را بر حسب تعغیر طولی یا زاویه ای اهرمشخص می نمایند.انواع لیمیت سویچ ساده۱-کلید محدود کننده فشار انتهایی۲-کلید محدود کننده ای قرقرهای۳-کلی محدود کننده قرقره اییک طرفه از چپ۴-کلید محدود کننده قرقرهای یک طرفه از راست۵-کلید محدود کننده قرقر ه ای دو طرفه۶-کلید محدود کننده آنتنی دو طرفه
کلید تابع فشار(کلید های گازی)این کلید ها برای کنترل سطح گاز داخل مخازن و کمپرسورها،تنظیم فشار آب داخل لوله ها و روشن و خاموش کردن اتوماتیک این دستگاه ها مورد استفاده قرار م گیرد.عامل فرمان این کلید ،فشار گاز یا مایع داخل مخزن است.عامل قطع و وصل این کلید گاز می باشد اصول کار آن بدین صورت است که که فشار گاز موثر بر هر صفحه نیرویی معادل F=P.A ایجاد می نماید(P فشار و A سطح مقطع صفحه است).در رله ها F باعث جابه جایی صفحه می شود.این جابه جایی از طریق یک اهرم منتقل شده و کنتاکتی را قطع و وصل می نماید.نیروی برگردان را فنر زیر صفحه ایجاد می کند.پس با انتخاب فنر های مختلف می توان فشار های کم یا زیاد را بر روی صفحه اثر داده و قطع و وصل کنتاکت را بطور دلخواه تنظیم نمود.
کلید های شناور
کلید های شناور برای کنترل سطح آب یا مایهات داخل منبع ها،استخر ها و مخازن مورد استفاده قرار می گیرد.ساختمان این کلید از وزنه تعادل ،یک قسمت شناور و یک میکرو سویچ تشکیل شده است.هنگامی که قسمت شناور را تنظیم می کنند با تغیر سطح مایع داخل مخزن شناور تغیر مکان داده به میکرو سویچ داخل کلید فرمان می دهد و باعث قطع و وصل مدار می شود.
چشم های الکتریکی(سنسورها)
این کلید نوعی کلید فرمان دهنده است که بدون برخورد فیزیکی با دست یا هر وسیله دیگری توسط سیستم چشم الکتریکی از فاصله حداقل یک میلی متر و حداکثر۸متر واکنش نشان میدهد و فرمان صادر می کند همچنین به وسیله رله ای که در داخل آن به کار رفته ،کنتاکت های را باز می کند یا می بندد و در نتیجه به دستگا ه های مورد نظر فرمان میدهد.از این کلید در دستگاه های صنعتی و خطوط تولید استفاده فراوان می شود.
رله زمانی (تایمر)و انواع آنیکی از وسایل فرمان دهنده مدار های کنترل اتوماتیک ،تایمر ها یا رله های زمانی هستنند که وظیفه کنترل مدار را برای مدت زمان معینی بر عهده دارند.اصول کار رله ها همانند کنتاکتور ها است با این تفاوت که در رله ها:۱-تمام کنتاکت ها از لحاظ فرم ظاهری شبیه هم هستنند و در مدار های فرمان شرکت می کنند .۲-کنتاکت ها بنا به مقتضیات کار ممکن است به طور لحظه ای یا با تاخیر زمانی قطع و وصل شوند . در این صورت نام رله ،رله لحظه ای یا رله با تاخیر زمانی خواهد بود.۳-رله ها همچنین ممکن است دارای کنتاکت های لحظه ای یا با تاخیر زمانی باشند.البته منظور از تاخیر زمانی فاصله زمانی است که بین عمل کنتاکت (اعم از باز شدن یا بسته شدن) از لحظه اتصال سیم پیچ رله به ولتاژ به وجود می آید.تا کنون در صنعت برق رله های زیادی ساخته شده اند که مشخصات مختلفی داشته و هر یک برای کار بخصوصی مورد استفاده قرار می گیرند.برای مثال در انتقال انرژی و حفاظت خطوط ،از یک رله خاص استفاده می کنند.یک جور رله دیگر که مشخصات بخصوص دیگری دارد در صنعت نساجی و رله دیگر در جای دیگر….من چند رله را برای دوستان معرفی می کنم که از مشهورترین و پر کاربد ترین رله ها هستنند البته اگر دوستان می توانند رله های دیگری را معرفی کنند خیلی خوب میشه۱-رله زمانی موتوری یا الکترو مکانیکیاین رله بر اساس ساعتی کار میکند که محرک چرخ دنده های آن موتور آسنکرو سنکرو و بیشتر موتور با قطب چاکدار است می باشد.اصول کار آن به این صورت است که دور موتور توسط یک سیستم چرخ دنده کاهش می یابد بطوری که در نهایت ،آخرین چرخ دنده کنتاکت را خیلی به آرامی با یا بسته می کند. زمان شروع رله از لحظه راه اندازی موتور محسوب می شود.توسط این رله می توان زمان هایی از حدود ثانیه تا حدود ساعت ،و حتی روز و هفته تنظیم نمود.محل دیسک در لحظه شروع به کار ،قابل تنظیم است و پس از تنظیم زمان آن (توسط زایده خارجی) و تغذیه تایمر ،موتور با دور ثابت به حرکت در می آید و با گردش موتور ،زمان تایمر شروع می شود. پس از گردش ،به علت برخورد با زایده دیسک ،متوقف می شود و به میکرو سویچ داخلی فرمان می دهد و کنتاکت های تایمر عمل می کنند و به طور اتوماتیک قطع می شوند و موتور یا هر وسیلهء دیگر از کار می افتد.البته رله های جدیدی است که هنگام عمل کنتاکت بازی را بسته و کنتاکت بسته ای را باز می کند و می توان موتوری را خاموش یا روشن کرد یا نیرو را از مو توری به موتور دیگر انتقال داد .۲-رله زمانی الکترونیکیاز تایمر های الکترونیکی برای تنظیم زمان های کمتر از ثانیه تا چندین ثانیه استفاده می شود. در ساختمان این تایمر ها ،از مدار ها و اجزای الکترونیکی استفاده می شود.در در نوعی از این تایمر ها با شارژ و دشارژ شدن یک خازن بوبین یک رله کوچک تحریک می شود. اصول ساختمان رله الکترونیکی بر مبنای مدار RC (خازن و مقاومت)و بر حسب تاخیر زمانی استوار است .تنظیم این نوع تایمر ها بستگی به مقاومت سر راه خازن دارد.در ساده ترین نوع تایمر الکترونیکی در تایمر نوع خازنی ،رله هنگامی وصل می شود که خازن شارژ بشود و ولتاژ دوسر آن برابر ولتاژ وصل رله گردد.پس از وصل رله ،با ذخیره شدن در خازن روی مقاومتی که توسط کنتاکت باز رله به دو سر خازن وصل می شود تخلیه می گردد.در این نوع با تعغیر ظرفیت خازن می توان زمان تایمر را تنظیم کرد.۳-رله زمانی نیو ماتیکیدر این رله ا خاصیت ذخیره سازی و فشردگی هوا استفاده می شود .به این ترتیب که رله هنگام رها شدن،خیلی راحت رها می شود.وقتی که بوبین تحریک قسمت متحرک را جذب می کند ،اهرم،قطعه ای را که به شکل دم آهنگری است فشار خواهد داد .هوای دم از طیق سوپاپ یک طرفه خارج می شود. وقتی که بوبین از تحریک خارج می شود ،فنر دم را منبسط می کند .دم از طریق سوپاپ تنظیم ،از هوا پر می شود.سرعت انبساط دم در رابطه با پیچ تنظیم تفاوت می کند وقتی که دم به حالت عادی برگشت ،کنتاکت ها عمل می کنند.بنابراین به وسیله تنظیم کردن پیچ تنظیم ،عمل کردن کنتاکت ها را می توان تعقیر داد.کار این زمان سنج شبیه تایمر موتوری است ؛با این تفاوت که زمان سنج موتوری پس از تنظیم و وصل بوبین آن به ولتاژ شروع به کار می کند،ولی زمان سنج نیو ماتیکی پس از قطع بوبین آن از ولتاژ شروع به کار می کند.۴-رله زمانی بی متال یا حرارتی (تایمر حرارتی)این نوع تایمر با استفاده از خاصیت بی متال کار می کند و در انواع رله ذوب شونده ،رله حرارتی بی متال و رله حرارتی منعکس کننده میله ای ساخته می شوند.زمانی که جریان از بی متال عبور می کند گرم میشود و پس از مدتی در اثر تعقیر شکل عمل کرد مدار را قطع یا وصل میکند.دقت این نوع تایمر زیاد نیست و آب و هوای محیط بر روی آن اثر می گذارد به طور کلی می توان رله های زمانی را به دو دسته تقسیم کرد:الف-رله های تاخیر در وصل(ON-DELAY) :به رله ای گفته می شود که باید به رله انرژی داده شود و سپس رله عمل کرده کنتاکتی را باز یا بسته کند؛مثل رله زمانی موتوری.ب-رله تاخیر در قطع(OFF-DELAY) :به رله ای گفته می شود که بعد از قطع شدن انرژی عمل کرده کنتاکتی را باز یا بسته کند؛مثل رله نیو ماتیکی.۵-رله زمانی هیدرو لیکیدر این رله ها از سیستم هیدرو لیکی جهت تاخیر در مدار استفاده می شود. طرز کار آن طوری است که وقتی جریان برق به رله وصل می شود ،مقداری روغن در داخل آن جابهجا می شود.برای بازگشت روغن به مکان اولیه زمانی لازم است که این زمان را به عنوان زمان تایمر در نظر میگیرند.این رله ها را در مدارهای مختلف به کار می برند.اگر کسی از دوستان توضیح بیشتری در ارتباط با این رله دارد لطفا ارائه بده تا مطالب کامل تر شود.
ترموستاتترموستات نوعی رله حرارتی است که در مقابل حرارت محیط حساس بوده و عمل میکند.این وسیله در دستگاه های مختلف صنعتی کاربرد فراوان دارد و وظیفه تعادل حرارتی دستگاه را بر عهده دارد.در صورتی که درجه حرارت از حد تنظیمی فراتر رود ،کلید عمل کرده یک کنتاکت باز را می بندد و یا کنتاکت بسته ای را باز می کند.از ترموستات بیشتر در وسایل حرارتی و برودتی مانند شوفاژ،یخچال،و چیلر استفاده می شود.
کلیدهای تابع دور(گریز از مرکز)
کلید های تابع دور در بعضی الکترو موتورهای یک فاز جهت خارج کردن سیم پیچ کمکی از مدار و در موارد دیگر مانند ترمز جریان مخالف به کار می رود.ساختمان آنها از یک محور و دو وزنه تشکیل شده که به وسیله یک طوق و یک فنر حول محور حرکت می کند و با زیاد و کم شدن سرعت موتور یا وسیله چرخنده ،وزنه های دو طرف به محور نزدیک یا دور می شود ؛به این ترتیب طوق روی محور حرکت می کند و باعث قطع و وصل کلید می شود